


Abstract

Black and Litterman proposed a portfolio optimization model that

combines investor’s views on future asset’s returns with neutral market

equilibrium. However, specifying portfolio views is a challenging task,

specially when investors have conflicting opinions on the same asset. In this

thesis, we suggest a new portfolio optimization formulation that is robust

for investor’s views. Our approach was tested on synthetic data, using a

wide range of parameters to simulate different invertor’s views and market

scenarios. The performance of this new robust formulation is compared with

the traditional Black-Litterman model. The result show that our robust

methodology can provide better risk adjusted performance compared to the

orignial model and are less sensitive to incorrect inverstor views.
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Resumo

Black e Litterman propuseram um modelo de otimização de portfólio

que combina visões do investidor sobre retornos esperados de ativos com o

equiĺıbrio neutro de mercado. No entanto, especificar visões sobre uma

carteira de investimentos é uma tarefa dif́ıcil, especialmente quando os

investidores têm opiniões conflitantes sobre o mesmo ativo. Neste trabalho,

é proposto uma nova formulação para otimização de carteiras, que é robusta

diferentes à visões do investidor. A nossa abordagem foi testada em

dados sintéticos, usando uma ampla gama de parâmetros para simular

diferentes cenários de mercado e visões do inversor. Por fim, é comparado

o desempenho desta formulação robusta com o modelo Black-Litterman

tradicional frequentemente utilizado na indústria financeira. Os resultados

mostram que a metodologia robusta pode providenciar melhor desempenho

ajustado ao risco em comparação com o modelo orignial e são menos

senśıveis às visões do investor.
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Otimização Robusta; Modelo Black-Litterman; Otimização de
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1. Introduction

In 1952 Professor Harry Markowitz published one of his most notorious

work named “Portfolio Selection” (Markowitz, 1952), which is considered one

of the main articles in quantitative finance and states the beginning of modern

portfolio theory. His innovative approach goes beyond the traditional asset

management, which focused on predicting stock price changes using funda-

mental and technical analysis. According to Markowitz, portfolio selection

problem consists on finding the optimal trade off between risk and return.

Moreover, his results form the theoretical foundation of a concept that practi-

tioners and academics have always known, that diversification reduces risk on

a given portfolio.

Markowitz’s model requires distribution information concerning the be-

havior of future assets returns. However, returns are not completely known

by academics or practitioners, therefore approximate return models are used

to describe its dynamics. Thus, in order to implement the mean-variance ap-

proach proposed by Markowitz, one needs to estimate means and covariances

of asset returns and plug these estimates into an optimization problem mod-

eled by the investor. This leads to an important drawback of the conventional

mean-variance approach, the estimation error from data samples. However, a

significant number of researchers have tried to diminish the impact of estima-

tion errors in the optimal allocation (see DeMiguel et al. (2009); Chopra and

Ziemba (1993); Best and Grauer (1992)). Some of the techniques proposed are

portfolio re-sampling and Bayesian shrinkage, for more details on the topic we

refer to Jorion (1986) and Basak et al. (2009).

These practical drawbacks motivated Fisher Black and Robert Litterman

while working at Goldman Sachs to develop a new asset allocation methodol-

ogy. As a result, the idea to combine equilibrium estimates of asset returns with



investor’s private opinions about future returns was introduced at Black and

Litterman (1992). Their approach employed a Bayesian analytical methodol-

ogy to estimate new asset returns and a covariance matrix. Computational

tests have shown that the optimal portfolios resulted by this method are more

intuitive, stable and diversified, when compared to the conventional Markowitz

methodology.

Black and Litterman’s original paper (Black and Litterman, 1992) only

explained the main ideas, leaving it to other researchers to better explain

the implications of their model. Subsequent research on the Black-Litterman

model was done by Satchell and Scowcroft (2000); Walters (2011); He and

Litterman (2002), where they provide a more complete survey on the model

and explains it in further detail. Also, a complete applied perspective of the

Black-Litterman model was conducted by Mankert (2010). Other authors have

focused on extensions of the original model, as in Herold (2005); Idzorek (2002);

Fernandes et al. (2013); Meucci (2008); Silva et al. (2017).

A very dynamic area of research in asset management is robust portfolio

optimization. This approach acknowledges the impacts of estimation error and

seeks for the optimal portfolio under the worst-case realizations of estimation

uncertainty. Among many studies on portfolio robust optimization, Lobo

and Boyd (2000) provide an introduction to robust portfolio optimization

formulations, listing uncertainty sets that are convex and tractable to model

asset returns. Moreover, Halldórsson and Tütüncü (2003) introduce a robust

formulation for the mean-variance model, that allocates the solution in the

worst-case performance within the set of values for the mean and covariance

matrix in the uncertainty set. More recently, Fernandes et al. (2016), proposed

a new adaptive robust portfolio model. Their asset allocation model uses

data-driven polyhedral uncertainty sets to construct robust loss constraints on

a rolling horizon scheme. Moreover, through empirical results using realistic

transaction costs in the Brazilian Market, they show that this new strategy can

5



introduce a new perspective of robust optimization for industry practitioners.

For a thorough discussion related to robust portfolio management see Fabozzi

et al. (2007), Kim et al. (2013), Fabozzi et al. (2009) and Fernandes et al.

(2016).

1.1. Contributions

The objective of portfolio managers is to achieve results beyond market

benchmarks by using information and techniques that is not broadly available

to general investors. In this thesis we provide a robust optimization approach

on the Black-Litterman model that can significantly improve the performance

and risk management of practitioners. We summarize the main contributions

of this thesis as follows:

1. Using concepts from robust optimization, we propose a general robust

allocation model based on the Black-Litterman framework. In particular,

our framework enables to incorporate robustness through uncertainty

sets on the views from different forecasters and on the market model.

2. We provide computational evidence using synthetic data that robust

black-litterman portfolios can present better risk-adjusted performance

profiles compared to the original model. By introducing robustness on

views, we empirically show that the overall performance of the portfolios

are less sensitive to accuracy on portfolio views. We also show that

incorporating the overall uncertainty structure of multiple forecasters

can improve portfolio allocation.
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2. Literature Review

In this chapter, we present and discuss the theoretical background for

the current work. The literature review is organized in three major sections.

The first covers a review of second-order cone programming. The following

section reviews robust optimization techniques and relates it to the discussion

associated with second-order cone programming problems. Finally, we present

the Black-Litterman method and recent relevant extensions of the method.

2.1. Robust Optimization

Real optimization problems often have uncertainty parameters. Parame-

ters can be naturally stochastic or uncertain due to errors (e.g., measurement,

estimation errors). Preceding to the establishment of robust optimization,

data uncertainty problems were often modeled using stochastic optimization.

Stochastic optimization assumes that the probability distribution is known or

estimated. If it is plausible to assume this condition and the reformulated opti-

mization problem is computationally tractable, then stochastic optimization is

a possible methodology to solve this problem. For further details in stochastic

optimization, see Shapiro et al. (2009) and Birge and Louveaux (1997).

Conversely, robust optimization does not assume that the probabilities

distributions are known, instead, it assumes that the parameters uncertainty

lies in a predefined uncertainty set. The first idea of uncertainty set was

introduced by Soyster (1973), who suggested a linear optimization model in

which its optimal value is feasible to all data within a convex set. In exchange

for a robust solution to all possible scenarios, this model is known in the

literature to produce optimal solutions that are too conservative.

Even though the first published work dates back to the 1970s Soyster

(1973), it was many years later that a major development in the theory of ro-



bust optimization was taken by Ben-Tal and Nemirovski (1998, 1999), Ghaoui

and Lebret (1997) and Ghaoui et al. (1998). Their work provided a detailed

analysis on robust optimization framework, in either linear optimization and

general convex optimization. To solve the conservativeness issue, Ben-Tal and

Nemirovski (1999) introduced a less conservative model, by considering a lin-

ear optimization problem with ellipsoidal uncertainties which involved solving

a robust counterpart of the nominal problem. They showed that ellipsoidal

uncertainty sets resulted in a tractable robust convex problem that could be

solved as second-order conic program. Using the concepts of robust optimiza-

tion, Bertsimas and Sim (2004) provided a new framework to control conser-

vatism of the optimal solution while maintaining the advantages of the linear

formulation proposed by Soyster (1973).

Robust optimization reflects the trade-off between robustness and each

possible realization of the uncertainty parameter. Since the probability

distribution of the parameter is unknown, the general approach is to specify

the size and shape of the set around the uncertainty parameter. Where the

size of the set determines the probability that the uncertain parameter takes

on a value in the set, and the shape dictates the complexity of the optimization

problem Fabozzi et al. (2009).

2.1.1. Robust Optimization Concepts

As an example we consider an uncertain linear optimization model,

however the discussions that arise from this problem can be extended to other

classes of uncertain convex optimization problems. The standard uncertain

linear optimization problem takes the following form

minimize
x

f′x

subject to Ax ≤ b

(A,b) ∈ U ,

(2-1)

where x ∈ Rn are the decision variables, A ∈ Rm×n, b ∈ Rm are the uncertain
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coefficients related to the LO problem and U is a uncertainty set that is

specified by the user. Notice that this problem is equivalent to a collection

of LO problems with a common structure that the parameters may varying in

a given uncertainty set.

Robust optimization problems that we mention throughout this work

are modeled to focus on problems with three main characteristics Nemirovski

(2012). First, all decision variables x ∈ Rn are “here and now” decisions, mean-

ing that each decision variable must be specified before the uncertainty param-

eters unfold. The decision maker takes responsibility for the consequences of

his decisions when, and only when, the actual data lies in the uncertainty set

U that was previously established. Finally, the decision maker cannot bear

violations of the constraints when the data is within the given uncertainty set

U , in the literature these type of constraints are known as “hard” constraints

Ben-Tal and Nemirovski (1999).

Based on the assumption that the problem must be protected against all

uncertainty realizations, we introduce the concept of robust feasibility, that

is, the optimization problem should be feasible within all realizations of the

uncertainty set. Therefore, a vector x ∈ Rn is robust feasible if it satisfies the

constraints for all realizations of uncertainty, as follows

Ax ≤ b ∀(A,b) ∈ U . (2-2)

The idea of robust feasibility naturally leads to these worst-case oriented

optimization problems. A central concept around robust optimization method-

ology is the robust counterpart of an uncertain problem, which is defined as

the optimization problem that seeks for the best robust feasible solution over

the uncertainty set. The robust counterpart of (2-1) is equivalent to

minimize
x

f′x

subject to Ax ≤ b, ∀(A,b) ∈ U .
(2-3)

Notice that the robustness with respect to the uncertainty set U can
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always be formulated constraint-wise. For some of the examples we may focus

on a single constraint, thus for problem (2-3) a constraint-wise uncertainty can

be modeled as

(a + Pη)′ x ≤ b, ∀η ∈ Uη, (2-4)

where η is a constraint-wise realization of the uncertainty set that belongs to

the predefined set Uη. Moreover, in this formulation a robust feasible solution

x ∈ Rn satisfies all uncertainty constraints (A(η)x ≤ b), for all realizations of

η ∈ Uη.

2.1.2. Solving the Robust Counterpart

Observe that problem (2-3) can be defined as a problem with infinitely

many constraints due to the worst case formulation, which makes it intractable

in its current form. However, there are robust reformulation techniques to

transform it into a one-level optimization problem. Here we describe the details

of this approach.

The robust reformation technique is the main procedure in Robust

Optimization, which consists of three steps. And as result, we obtain a

computationally tractable robust counterpart, which contains a finite number

of constraints.

To illustrate the three steps to derive the Robust Counterpart we use a

polyhedral uncertainty set:

U = {η : Dη + q ≥ 0} .

Step 1 (worst case reformulation): Observe that (2-4) can be reformulated

in a worst case perspective as

a′x + max
η∈U

(P′η)
′
x ≤ b (2-5)

Step 2 (duality): In the next step we obtain the dual of the inner max-

imization problem. Due to strong duality, the dual (minimization problem)
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is an upper bound of the primal problem (maximization problem) and their

optimal value coincides. Therefore, the constraint (2-5) is equivalent to

a′x + min
w
{q′w : D′w = −P′x,w ≥ 0} ≤ b. (2-6)

Step 3 (Robust Counterpart): It is important to mention that the inner

minimization problem can be omitted from the constraint. By strong duality,

the dual problem is also bounded and feasible, in addition the constraint holds

for at least one w ∈ Rm. Therefore, the final equivalent formulation of the

Robust Counterpart (2-3) for this uncertainty set becomes the following

minimize
x,w

f′x

subject to a′x + q′w ≤ b

D′w = −P′x

w ≥ 0,

(2-7)

note that the constraints for (2-7) are linear in x ∈ Rn and w ∈ Rm and the

objective function is also linear, therefore this equivalent problem is tractable.

This simple example is just to illustrate this powerful setup to deal with

problems that have hard constraints. Moreover, using this same three steps

that was described, one can arrive at tractable robust counterparts for different

conic uncertainty sets.

2.1.3. Defining Uncertainty Sets

One way of modeling uncertainty is to generate possible outcomes for

the uncertain parameters, for instance, one could define a range of values for

future asset returns. Optimization under uncertainty is dealt in the robust

optimization framework by specifying an uncertainty set, which is a collection

of possible scenarios for the uncertain parameters. Moreover, the robust

counterpart of the original problem would then contain a set of constraints for

each uncertain parameter, and ensure that the original constraint is satisfied

for the worst-case scenario under the predefined uncertainty set. Typically the
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uncertainty sets are chosen such that it satisfies two important properties:

– The robust constraint a(η)′x ≤ b ∀η ∈ Uη is computationally tractable

– For a predefined level of confidence ξ, the uncertainty set can be modeled

such that the constraints hold with at least a probability ξ. This property

implicates that for all x ∈ Rn and b ∈ R the chance constraint holds,

therefore

If a(η)′x ≤ b ∀η ∈ Uη , then x also satisfies Pη(a(η)′x ≤ b) ≥ 1− ξ.

Usually uncertainty sets that are used in practice range from polytopes

to more sophisticated conic-representable sets, that are derived from different

assumptions about the uncertainty parameter. For instance, a confidence in-

terval can be defined for an uncertainty parameter, which leads to a polyhedral

set known as box uncertainty set. For an uncertainty parameter η ∈ Rn, the

box uncertainty set is given as follows

Uη = {η : |ηi − η̂i| ≤ εi, i = 1, . . . , n} , (2-8)

where η̂ is the nominal estimated value for η and ε denotes the absolute

distance difference around the nominal value. This uncertainty set contains the

full range of realizations for each uncertainty parameter, therefore it guarantees

that each constraint is hardly ever violated (ξ = 0). On the other hand, there

is a small chance that all uncertain parameters assume their the worst case

values at once. The conservativeness of this set led to the development of

smaller uncertainty sets that still guarantees that each constraint holds in

almost every possible scenario.

When additional information, such as moments, symmetry or unimodal-

ity about the distributions of uncertainty parameter are available, smaller un-

certainty sets can be used. For example, the ellipsoidal uncertainty set pro-

posed by Ben-Tal and Nemirovski (2000) allows to include second moment

information on the uncertainty set. Most generally this uncertainty set can be

written as the following
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Uη =
{
η : (η − η̂)′Σ−1

η (η − η̂) ≤ ε
}
, (2-9)

where Ση is usually assumed to be the covariance matrix of the parameter η.

The authors have also proved that if η are symmetric distributed independent

random variables the robust constraint is violated at most with probability

exp(−ε2/2). In figure (2.1), we illustrate an example of a two dimensional

ellipsoidal uncertainty set.

Figure 2.1: Example of an ellipsoidal uncertainty set

A second polyhedron set was proposed by Bertsimas and Sim (2004),

they introduced the concept of budgeted uncertainty set. Following the

assumption that not all uncertain parameters would go to its worst-case value

simultaneously, they introduce a parameter called budget of uncertainty, Γ,

which controls the number of uncertain parameters (η) that are allowed to

deviate from its nominal value. This uncertainty set is given by

Uη =

{
η : |ηi − η̂i| ≤ εizi,

n∑
i=1

zi ≤ Γ, 0 ≤ zi ≤ 1, i = 1, . . . , n

}
, (2-10)

here η ∈ Rn and if η are independent and symmetrically distributed the

confidence level is at most exp(−Γ2/(2n)). Note that when Γ = 0 the

constraint is equivalent to the constraint in the nominal problem and when
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assumes the same value as the number of uncertainties we have the box

uncertainty set. This is the reason Γ is called budget of uncertainty, after

all its value exposes the trade off between the nominal problem and the

more conservative box uncertainty. It is also important to mention that

this uncertainty set leads to a linear programming problem, therefore more

tractable than the ellipsoidal uncertainty set.

As an example, we illustrate how the budget of uncertainty affects this

uncertainty set and its relation with the box uncertainty set. First, consider a

Bertsimas uncertainty set in two dimensions:

Uµ =

{
µ : |µi − 2| ≤ 1zi,

n∑
i=1

zi ≤ Γ, 0 ≤ zi ≤ 1, i = 1, 2

}
. (2-11)

In figure 2.2 we project this uncertainty set in a two dimensional space,

for Γ = 1 and Γ = 2. Notice that, for Γ = 2, the uncertainty set is equivalent

to the uncertainty in equation 2-8, and as the budget of uncertainty becomes

smaller the set also reduces. For the specific value of Γ = 1, the set allows one

of the parameters to take its nominal value (i.e. average in this example), and

the other parameter assumes its worst case value.

Figure 2.2: Example of Bertsimas uncertainty. On the left: Γ = 2, on the

right: Γ = 1.

If regression techniques are used to estimate the uncertainty parameters,
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polyhedral and ellipsoidal sets comes naturally as potential uncertainty sets,

and as was previously mentioned, it can also be associated to probability

guarantees for each constraint.

A newly data driven approach was introduced by Bertsimas et al. (2014).

They propose a new methodology that uses data to construct uncertainty sets

for robust optimization using hypothesis test. Moreover, on the same article

is also provided a thorough guideline with recommendations for practitioners

and illustrates applications with portfolio management and queuing.

In recent papers, Bertsimas and Brown (2009) and Natarajan et al.

(2009) independently formulated coherent risk measure minimization as robust

optimization problem and showed the relation between coherent risk measures

and its equivalent uncertainty sets. Moreover, Bertsimas and Takeda (2015)

study minimizing a coherent risk measure under a norm equality constraint

using a robust optimization framework. To illustrate the correspondence

between risk measures and robust optimization uncertainty sets, consider the

uncertainty set associated with discrete Conditional Value at Risk (CVaR)

generated by a discrete distribution of η̃ such that P (η̃ = ηi) = pi, i = 1, . . . , n

UCV aR1−α =

{
n∑
i=1

ziηi :
n∑
i=1

zi = 1,0 ≤ z ≤ 1

α
p

}
, (2-12)

In figure 2.3 we illustrate a CVaR uncertainty set of an equiprobable

discrete distribution with 20 elements in its sample space (i.e. The set of

possible out comes is {η1, . . . ,η20} and P (η̃ = ηi) = 1
20
,∀i = 1, . . . , 20).
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Figure 2.3: Example of CVaR uncertainty set.

To conclude this section we draw attention to an important misconcep-

tion regarding the interpretation of the uncertainty set. When an uncertainty

set is constructed to include the true parameter with a confidence level of ξ,

it implicates a stronger probability guarantee than it seems at first. For the

reason that, the constraint realization holds at this probability for all realiza-

tions of the uncertain parameters outside of the uncertainty set, not only the

worst-case scenarios, since it also includes the “good” scenarios. Hence, by

solving a problem through a robust optimization perspective the probability

guarantee is usually much higher than 1− ξ.

2.1.4. Robust Portfolio Optimization

Estimated expected returns are likely to diverge from the actual future

asset returns, however, we may assume a uncertainty set that can predict the

actual future asset return with high probably margin. Hence, for expected

returns, uncertainty sets describes a geometric structure around estimated

values of future asset returns (Kim et al., 2013). In this dissertation we only

consider the case when the covariance matrix of returns is known and the

uncertainty relies on the expected returns.
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The simplest choice of uncertainty sets for expected returns (µ) is a box,

Uµ = {µ : |µi − µ̂i| ≤ εi, i = 1, . . . , n}, where εi is related to the confidence

level around each estimated return. And, the robust portfolio optimization

problem is formulated as

minimize
x

x′Σx

subject to min
µ∈Uµ

µ′x ≥ µ0,
(2-13)

where µ0 is the required expected return from the portfolio. Notice that this

is the same uncertainty set proposed by Soyster (1973). Moreover, this model

can be reformulated as a one-level optimization problem

minimize
x

x′Σx

subject to µ̂′x− ε′ |x| ≥ µ0.
(2-14)

From problem (2-14) we can derive a intuitive explanation for the single-

level robust optimization problem. When the weight of an asset i is negative,

the robust problem increases its required expected return, µ̂+ εi, on the other

hand when it assumes positive values the expected return takes reduction,

µ̂− εi. Fabozzi et al. (2009) interpreted this fact as the risk adjustment by an

investor that is averse to estimation error.

Another common structure for the uncertainty set is to consider it an

ellipsoidal set, Uµ =
{
µ : (µ− µ̂)′Σ−1

µ (µ− µ̂) ≤ ε2
}

, where ε2 is often chosen

as the quantile of a chi-squared distribution with n degrees of freedom and Σµ

is the covariance matrix of the estimated expected return. Again, it can be

shown by using SOCP duality that problem (2-13) can be formulated as

minimize
x

x′Σx

subject to µ̂′x− ε2
∥∥∥Σ1/2

µ x
∥∥∥

2
≥ µ0,

(2-15)

which is a Second Order Cone Programming problem. Ceria and Stubbs (2006)

observe that the term −ε2
∥∥∥Σ1/2

µ x
∥∥∥

2
is related to the estimation error and

its inclusion in the constraint minimize the effect of estimation error on the

optimal decision.
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More recently, Fernandes et al. (2016) proposed a new perspective on

uncertainty sets for robust portfolio optimization. Their work focused on

data-driven polyhedral uncertainty sets constructed with an intuitive loss

constraint for asset returns in a rolling horizon scheme. They have also shown

empirically that this methodology is able to capture market dynamics and

the dependence structure between assets. To illustrate, let’s consider a simple

return maximization problem subject to an robust loss constraint

maximize
x

µ̂′x

subject to L(r,x) ≤ ε, ∀r ∈ Ur,
(2-16)

where, r is the unknown vector of asset returns, x are the decision variables

and ε is a scalar that defines the investor’s maximum tolerance to a daily loss

in his portfolio. Moreover, the loss constraint is defined as

r′x ≥ γ, ∀r ∈ Ur, (2-17)

where γ is a parameter that denotes the percentage of loss in the portfolio.

Moreover, the uncertainty set Ur is defined as the convex hull of past n observed

vectors of daily returns, which can be expressed as

Ur =

{
r : r =

n∑
t=1

rtξt,
n∑
t=1

ξt = 1, 0 ≤ ξ ≤ 1,

}
, (2-18)

here, rt are n sample historical returns.

The authors have shown that to guarantee robust feasibility of the

loss constraint for any optimal decision x it is sufficient to include n linear

constraints (2-17) for each return sample rt. Therefore, problem (2-16) can be

formulated in this framework as

maximize
x

µ̂′x

subject to r′tx ≥ γ, ∀rt = 1, . . . , n,
(2-19)

This approach enables the investor to adaptively generate polyhedral

uncertainty sets that changes over time according to market dynamics. In
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figure 2.4 we illustrate this uncertainty set in different days using a sample

of 252 daily returns observations. We can clearly see that the uncertainty set

expands when the market is more volatile, as well is captures the negative

correlation between both assets.
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Figure 2.4: Example of robust loss constraint in different market conditions.

2.2. Black-Litterman Model

The Black-Litterman method (Black and Litterman, 1990) was created

to be a practical and more stable portfolio management method. The

portfolio is created to provide intuitive weights to for the investors that can

be adjusted according to their opinions about the market. The methodology

starts by defining a neutral market portfolio and views determined by the

user, then these parameters are combined to construct a new updated market

distribution. The optimal porfolio is achieved by using this new distribution

as input to the classical mean-variance portfolio optimization problem.

This section reviews the Black-Litterman model, proposed by Black and

Litterman (1990) and Black and Litterman (1992), for more information on

the topic we also refer to Walters (2009), Meucci (2008) and Idzorek (2007).

It is also presented here a extension of the Black-Litterman model done by

Meucci (2008).
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2.2.1. The Model

Consider a market of N risky securities or asset classes where all investors

maximize their portfolio return for a given limit of risk. That is, investors look

to solve the classical Markowitz’s portfolio optimization problem:

maximize
x

µ′x

subject to x′Σx ≤ σ2
0,

(2-20)

where Σ is the covariance matrix of asset returns, x is the amount of wealth

invested on each security, µ is the expected asset excess returns and σ2
0 is the

risk limit specified by the investor.

A common path that is taken to solve equation (2-20), is to estimate

the covariance matrix and asset returns from an econometric model. However,

finding a stable estimation is rather a difficult task. With that in mind, Black

and Litterman (1990) suggested a framework that combines two set of inputs,

the market equilibrium and investor’s views.

Market Equilibrium Model

We start by considering a market with n risky assets, where the returns

follows a multivariate normal distribution:

r ∼ N(µ,Σ), (2-21)

where µ ∈ Rn is the expected return and Σ ∈ Rn×n is the covariance matrix,

which is considered to be known and estimated from historical data.

The Black Litterman model assumes that distributions of asset returns

are consistent with the market equilibrium. Hence, if all investors solve

equation (2-20) there exists δ, such that we can solve explicitly this problem

and obtain the relationship between market equilibrium portfolio (xmkt) and

the reference expected returns (µ)

µ = 2δΣxmkt. (2-22)
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Now, multiplying (2-22) by xmkt, δ = x′mktµ/(2x′mktΣxmkt). This

parameter is known in the literature as risk aversion level, as it measures the

risk-return trade-off of the portfolio. Thus, we define a market price of risk,

which for an unobservable value, σ2
mkt, we have that the market allocation,

xmkt, satisfies the optimal value of 2-20 and

δ̂ =
x′mktµ

2σ2
mkt

, (2-23)

where δ̂ is the average portfolio risk aversion. The magnitude of δ̂ reflects

investor’s aversion to estimation risk. When δ̂ is small, the investor’s aversion

to risk is also small, which leads to more risky portfolios. From an optimization

perspective, it happens because the portfolio variance is not penalized as much

in the objective function. The Black-Litterman model aims to find the average

risk aversion parameter of a given reference portfolio. Although there are

multiple studies on δ̂, which affects directly the market equilibrium returns,

there is no consensus on how to estimate δ̂. Moreover, these results are centered

around the capital asset price model equilibrium (CAPM). For the classical

proofs of these equations and further results on CAPM theory see Elton et al.

(2009) and Sharpe (1964).

It is a common practice to calibrate δ̂ so that the portfolio can better

represent the risk-return characteristics that is desired. Pachamanova and

Fabozzi (2011) recommends to calibrate via backtests using the historical data.

Furthermore, other authors specified the value of δ̂ that they have chosen.

For instance, Bevan and Winkelmann (1998) calibrate the market equilibrium

returns to an average target Sharpe Ratio based on their past experience, in

their global fixed income example they used a Sharpe Ratio of 1.0. Black and

Litterman (1992) used a Sharpe Ratio approximately 0.5 in the example shown

in their paper. Allaj (2013) proposed a econometric methodology to estimate

the risk averse parameter for the Black-Litterman framework. In practice,

there is no consensus on how this parameter should be estimated.
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The Black-Litterman model considers the true expected returns µ of the

securities are unknown and assumes that the CAPM serves as a reasonable

estimate for the expected returns, as a result the equilibrium model is defined

as

π = 2δ̂Σxmkt + εm, εm ∼ N(0, τΣ), (2-24)

here τΣ represents the confidence on the equilibrium expected return model.

For instance, a small value of τ implies a low confidence in our market

equilibrium estimate. On the other hand a high value indicates a high

confidence. As a result, the model states that µ is normally distributed

µ ∼ N(π, τΣ), (2-25)

The parameter τ was proposed to deal with market equilibrium uncer-

tainties, which is a scaling factor for the uncertainty of the estimated mean

return (see He and Litterman (1999); Meucci (2008)). This parameter is con-

sidered one of the most confusing aspects of the Black-Litterman model. The

original model presented in Black and Litterman (1992) does not specify how

to estimate it. Despite that, in the literature there are several methodologies

to estimate τ . The first methodology provides an idea of the magnitude of τ

by replacing it with 1
T

, where T is the number of observations. However, this

methodology is not well-founded, it is simply provides an idea of the magnitude

of τ . Moreover, Satchell and Scowcroft (2000) treats τ as a random variable

and others scholars give only recommended values of τ . Many of these authors

argues that τ is greater than zero and smaller than one.

2.2.2. Specifying Investor’s Views

An investor view is an information or opinion on the market that

possibly diverges from the reference market model. Black Litterman model

considers these views as expectations, q1, q2, . . . , qm, on different portfolios,

p1,p2, . . . ,pm, which is represented as the matrix P ∈ Rm×n. In the normal
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market these views corresponds to statements on the expected asset returns µ

Meucci (2008). Formally, the Black-Litterman model expresses the views as

q = Pµ+ εv, εv ∼ N(0,Ω), (2-26)

where Ω is the covariance matrix of the views extimation error, which, in a

sense, expresses the confidence of the investor on the views, P is the matrix of

the portfolios which the investor has a view and and q states the expected

return of each portfolio view. Originally the covariance matrix Ω can be

expressed in two different ways, which is differentiated by the dependence

between views.

– In the case of independent views, the matrix Ω is chosen in such a way

that the off diagonal elements should be equal to zero, therefore

Ω = diag(τ1, . . . , τn) (2-27)

– In the case where there is dependence between each view, Meucci

(2008) suggested to use the same dependent structure expressed by the

estimated covariance matrix, modified by the portfolio matrix P to match

the dimension of the original views q.

Ω =
1

τ0

PΣP′. (2-28)

Where, τ0 ∈ (0,∞) represents the confidence on the views. When lim
τ0→0

τ0

it neglects the market and only consider the views and with lim
τ0→∞

τ0

expresses full confidence on the CAPM model.

2.2.3. Market Distribution Update

After the market equilibrium and investor’s views are specified, we pro-

ceed to update the returns distributions. There are two equivalent approaches

that can be used to arrive at the Black-Litterman formulation, which is known

as the posterior distribution. Here we follow the derivation shown at Fabozzi
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et al. (2007) which based on a standard econometrical technique, known as

mixed estimation technique described by Theil (1971). First, we combine the

investor views and market equilibrium equations in a standard linear model

for the expected returns

y = Xµ+ ε, ε ∼ N(0,W), (2-29)

with each respective term being

y =

π
q

 ,X =

In

P

 ,W =

τΣ 0

0 Ω

 , (2-30)

where In is an identity matrix of the same dimension as the number of assets.

From the following optimization problem we calculate the Generalized Least

Squares (GLS) estimatior for µ

minimize
µ

‖W−1(y−Xµ)‖2
2. (2-31)

From the solution of the optimization problem (2-31) we obtain the

estimated expected return of the Black-Litterman model, where µ̂BL =

(X′W−1X)−1X′W−1y. Applying this result to the original values of y,X and

W we arrive at

µ̂BL = [(τΣ)−1 + P′Ω−1P]−1[(τΣ)−1π + P′Ω−1q]. (2-32)

And, the variance estimated by the Bayesian update is given by

Σµ
BL = [(τΣ)−1 + P′Ω−1P]−1 (2-33)

However we are interested in the posterior distribution of the risky

securities, not the posterior distribution of the mean estimate. To find

this distribution we can equivalently rewrite (2-21) as r
d
= µ + εr, where

εr ∼ N(0,Σ). Hence, assuming that µ and εr are independent, the posterior

covariance matrix of reference model is
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ΣBL = Σ + [(τΣ)−1 + P′Ω−1P]−1 (2-34)

From equation (2-32) we see that the Black-Litterman expected return

is a weighted linear combination of market equilibrium π and the investor’s

views q. As we will later show, our approach uses this fact to develop

robust formulations of the Black-Litterman model under conflicting views

q ∈ Qq, where Qq is the uncertainty set of the views created from multiple

forecasters. In addition, one could also extend our models to an uncertain

market equilibrium π ∈ Pπ, in the same manner, Pπ is the uncertainty set of

the market equilibrium.
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3. Proposed Robust Model based on Black-Litterman
Approach

In this chapter we propose robust models based on the Black-Litterman

framework, where the investor incorporates conflicting views on the same asset

and sets a confidence region for the market equilibrium. We propose models

that construct uncertainty sets on the views with complete and incomplete

information. To model uncertainty, we adapt the uncertainty sets presented

in (2.1.3) to different possible scenarios from an investor’s perspective. We

divide this chapter in three sections: in the first section we present our

general robust model based on Black-Litterman approach, in the second one we

propose an uncertainty set based on complete information on the views from

the forecasters, therefore the investor is perfectly informed of all portfolio views

from the forecasters, before the realization of future asset returns. Whereas

in the last part of this chapter we focus on uncertainty sets constructed with

partial information about the views, which is assumed that the decision maker

has some statistical information about the forecasters.

3.1. General Robust Black-Litterman Model

We have seen in section 2.2 that the Black-Litterman model expected

return is a linear combination of the market reference model and the expected

return implied by the views, this result is shown in equation (2-32). The linear

combination are given by the following matrices

A = [(τΣ)−1 + P′Ω−1P]−1(τΣ)−1,

B = [(τΣ)−1 + P′Ω−1P]−1[P′Ω−1],

and, for n assets we have that A + BP = I, where I ∈ Rn×n is an identity

matrix. Following this line of thought, we start by defining our proposed



general mean-variance robust Black-Litterman framework

minimize
x

x′ΣBLx

subject to µBL(π,q)′x ≥ µ0,∀π ∈ Pπ,q ∈ Qq
(3-1)

where µ0 ∈ R is the expected return constraint and µBL(π,q) ∈ Rn is the

return implied by the Black-Litterman model, defined as µBL(π,q) = Aπ+Bq

and q and π belongs uncertainty sets. This general model considers a possible

robustness on both the market equilibrium and investor’s opinion. To deal

only with conflicting views in a robust optimization framework, we rewrite

(3-1) as the following

minimize
x

x′ΣBLx

subject to (a + Bq)′x ≥ µ0,∀q ∈ Qq,
(3-2)

where a = Aπ (i.e. the market equilibrium is defined as a point-wise estimate

of CAPM) and Qq is the uncertainty set defined by the user. Here we interpret

Qq as an uncertainty set of conflicting views on the same universe of asset

classes.

In problem (3-2), observe that µBL is an affine function of the views q

and the expected return constraint is linear in both the decision variables x

and the uncertainty parameter q. Moreover, assuming that Qq is a compact

convex set allows to derive a tractable robust formulation applying the three

steps described in section 2.1.2. In the next sections, we propose three models

that explore uncertainty sets regarding the views q under this framework. For

each model, we also try to give some intuition and how they would fit for

practical use.

3.2. Black-Litterman with Multiple Forecasters

In the first model, suppose that the portfolio manager receives n views

from f different analysts , q1,q2, . . . ,qf for the same portfolio P ∈ Rm×n, on

different assets and each one of these views has to satisfy the robust problem
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(3-2). Collectively the uncertainty set can be represented as a convex hull of

the analysts views

Qq =
{
q ∈ Rn | q = θ1q1 + · · ·+ θfqf ,θ ∈ ∆p

}
, (3-3)

where ∆p describes the probability simplex, which is given by

∆p =
{
θ ∈ Rf |θ ≥ 0,θ′1 = 1

}
. (3-4)

Notice that Qq is a polyhedron set, and it can also be expressed by a set

of linear equalities and inequalities. Thus, under this uncertainty set we can

write the robust constraint of problem (3-2) as

f∑
i=1

θi(a + Bqi)
′x ≥ µ0, ∀θ ∈ ∆p, (3-5)

hence, in the worst case perspective, constraint (3-5) can be formulated as

min
θ∈∆p

{
f∑
t=1

θi(a + Bqi)
′x

}
≥ µ0. (3-6)

To guarantee that (3-6) is satisfied for all forecasters and for any

allocation x, it is enough to include f constraints which will bound the robust

constraint to the convex hull denoted by uncertainty set Qq.

Proof. First, consider inner optimization problem of (3-6)

minimize
θ

∑f
t=1 θi(a + Bqi)

′x

subject to θ′1 = 1 : φ

θ ≥ 0,

(3-7)

where φ is a dual variable. Then, the dual problem of (3-7) corresponds to the

following LP

maximize
φ

φ

subject to φ ≤ (a + Bqi)
′x, ∀i = 1, . . . , f,

(3-8)

which yields to an equivalent robust constraint

28



max
φ
{φ | φ ≤ (a + Bqi)

′x, ∀i = 1, . . . , f, } ≥ µ0. (3-9)

Therefore, following step 3 of section (2.1.2), we can omit the inner

maximization problem. In addition, we apply Fourier-Motzkin scheme to

generate an equivalent set of constraints and eliminate the dual variable φ from

the robust constraint. Hence, the final formulation of the robust counterpart

becomes

(a + Bqi)
′x ≥ µ0, ∀i = 1, . . . , f. (3-10)

Now, we can rewrite the original optimization problem (3-1) as a single-

level equivalent problem

minimize
x

x′ΣBLx

subject to µ̂′BL,ix ≥ µ0,∀i = 1, . . . , f
(3-11)

where µ̂BL,i = a + Bqi. Notice, in problem (3-11) the optimal value satisfies

the return constraint for all forecasters.

3.3. Robust Black-Litterman with Incomplete Information

In this section we start to explore models with incomplete information

about the views. The ideas presented in this section can be used by investors

to employ views from market polls, in the robust Black-Litterman model. We

provide two methodologies to model uncertainty sets from a sample of market

participants.

3.3.1. Bertsimas and Sim’s Uncertainty Set

Suppose now that there are incomplete information about the views and

the investor only has the maximum, minimum and nominal values (i.e. average

or median value) of the views on the future asset returns from the forecasters,

for the same portfolio P ∈ Rm×n and covariance matrix Ω ∈ Rm×m. In

this scenario, our second model is based on the robust optimization framework

proposed by Bertsimas and Sim (2004). Their approach retains the advantages
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of the linear formulation proposed by Soyster (1973), in addition offers a

methodology to control the degree of robustness for every constraint by

introducing the parameter Γ, that, in our model, take a real value on the

interval [0,m]. The problem is formulated to protect deterministically against

worst case violation of the i constraint, only when a predetermined number of

Γ uncertainty coefficients are allowed to change. In other words, Γ controls the

number of uncertainty coefficients that may deviate from the nominal value.

Using the robust formulation proposed by Bertsimas and Sim (2004), the

uncertainty set for a general correlated set of views can be modeled as

Qq =
{

q : q = q̂ + C−1/2
q η|z ◦ (q− q̂) ≥ η ≥ z ◦ (q− q̂), z′1 ≤ Γ, 0 ≤ z ≤ 1

}
,

where C−1/2
q is the Cholesky decomposition of the views’s correlation matrix

Cq , η is the parameter that controls the uncertainty on the views q, Γ is

the parameter introduced by Bertsimas and Sim (2004) known as uncertainty

budget, q is the upper bound, q is the lower bound, q̂ is the nominal value

and ◦ is an element-wise product of two matrices (Hadamard Product).

In order to formulate problem (3-2) as a one-level optimization problem

under this uncertainty set, consider the following linear optimization model

minimize
z,η

(a + B(q̂ + C−1/2
q η))′x

subject to ηi ≥ zi(qi − q̂i),∀i : φ

ηi ≤ zi(qi − q̂i),∀i : φ∑m
i=1 zi ≤ Γ : λ

z ≤ 1 : δ

z ≥ 0,

(3-12)

where φ,φ, λ and δ are the dual variables associated to each constraint of the

problem. The dual problem of (3-12) is given by
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maximize
λ,φ,φ,δ

µ̂′BLx− Γλ− 1′δ

subject to φi(qi − q̂i)− φi(qi − q̂i) + λ+ δi ≥ 0,∀i

φ− φ = C1/2
q B′x,

φ ≥ 0,φ ≥ 0, λ ≥ 0, δ ≥ 0

(3-13)

Since problem (3-12) is convex, feasible and bounded for all Γ ∈ [0,m], by

strong duality problem (3-13) is also bounded and feasible and their optimal

values are the same. Therefore, substituting problem (3-12) to its dual we

arrive at the following equivalent one-level allocation problem

minimize
λ,φ,φ,δ

x′ΣBLx

subject to µ̂′BLx− Γλ− 1′δ ≥ µ0

φi(qi − q̂i)− φi(qi − q̂i) + λ+ δi ≥ 0,∀i

φ− φ = C1/2
q B′x

φ ≥ 0,φ ≥ 0, λ ≥ 0, δ ≥ 0.

(3-14)

This general robust formulation allows the decision maker to input upper

bounds and lower bounds on each view. In addition, using the budget of

uncertainty Γ, it is also possible to control the number of views that might

take their worst value simultaneously.

3.3.2. Ellipsoidal Uncertainty Sets

We motivate our next model as follows. Let’s consider two possible

scenarios, first the manager has only the average return view q̂ ∈ R of

N different independent identically distributed portfolio views, on the same

portfolio P ∈ Rm×n and known confidence covariance matrix Ω ∈ Rm×m.

In the second case, we also assume that the investor has information on the

covariance matrix of the forecasts, which we denote Sq ∈ Rm×m. Note that

the covariance matrix in average return forecasts is not necessarily the same as

the confidence covariance matrix. Throughout this section we provide insights
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on how to use these informations on our general robust model (3-2).

We start with the first scenario. To use the information on average return

of the views and the number of forecasters N as a robust form of the Black-

Litterman model, we provide a new perspective in light of hypothesis testing.

For that, consider the hypotheses

Ho : µBL = µ̂ML
BL vs Ha : µBL 6= µ̂ML

BL ,

where µ̂ML
BL is the maximum likelihood estimated Black-Litterman return con-

sidering the average return of N forecasters. We consider that the distribution

of the maximum likelihood estimator µ̂BL, based on an i.i.d sample of N in-

vestors is given by

µ̂ML
BL ∼ N (µ̂BL,

Σ̂µ
BL

N
). (3-15)

where, Σµ
BL is the covariance matrix obtained from the Bayesian update

estimator in equation (2-33).

To create an uncertainty set around the vector of the posterior mean

returns µBL or, in the case of the Black-Litterman model, around the estimate

µ̂BL since the true market parameter is unknown, we need the distribution of

µ̂BL. In case of elliptical distribution, information about the first two moments

is sufficient to determine an ellipsoidal confidence interval. Therefore, it is

possible to create a confidence ellipsoid centered at the point estimate µ̂BL

and using to describe the shape Σ̂BL, thus

UµBL =
{
µBL ∈ Rn | (µBL − E[µ̂ML

BL ])′(Cov[µ̂ML
BL ])−1(µBL − E[µ̂ML

BL ])) ≤ δ2
}

=

{
µBL ∈ Rn | (µBL − µ̂BL)′

(
Σµ
BL

N

)−1

(µBL − µ̂BL) ≤ δ2

}

= {µBL ∈ Rn | (µBL − µ̂BL)′(Σµ
BL)−1(µBL − µ̂BL) ≤ δ2/N} ,

where the size of δ2 determines the size of the uncertainty set and defines the
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desired confidence from the investor. In case of a multivariate normal distri-

butions, (µBL − µ̂BL)′(Σµ
BL)−1(µBL − µ̂BL) follows a chi-squared distribution

with n degrees of freedom. Thus, the size of δ2 can be defined appropriate

by a confidence level α ∈ (0, 1), such that δ2 = χ2
n(α). In figure 3.1 we illus-

trate a multivariate normal setting in two dimensions originating ellipsoidal

uncertainty sets for different values of α.
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Figure 3.1: Example of Black-Litterman model using confidence ellipsoid. On

the left: N = 2, on the right: N=10.

Observe that from this figure we could also infer that the US Dollar has

a smaller estimated volatility compared to Ibovespa index, as its respective

axis of the ellipse is quite shorter. Moreover, the ellipse coordinate axes are

tilted downward showing that the two assets are negatively correlated. And,

more importantly, we notice that the uncertainty set reduces as the number

of forecasters N increases, resembling a higher confidence for a larger sample.

Therefore, this setting is more appropriate when the decision maker is able to

infer more accurate results for larger samples of forecasters without any extra

information about the forecasts besides average return.

As was shown for problem (2-15), using an ellipsoidal uncertainty set the

original mean variance problem (3-2) can be reduced to the following second-

order cone programming problem
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minimize
x

x′ΣBLx

subject to µ̂′BLx− χ2
n(α)

N

∥∥(Σµ
BL)1/2x

∥∥
2
≥ µ0.

(3-16)

A quite interesting result can be found in this particular setting: the gap

between the robust efficient frontier and the classical Black-Litterman frontier

increases with respect to the risk axis, to, the optimal porfolio tends to be

relatively more conservative for higher levels of volatility. Also, for the same

level of risk the investor always chooses a more conservative portfolio when

performing a robust optimization.

Besides this general ellipsoidal µBL uncertainty set, one could use the

robust optimization approach to model only the uncertainty related to the

views q ∈ Rm, therefore not considering the variance of the mean return

estimator. A similar approach to the previous model can be performed.

We assume that the views forecast would describe an ellipsoidal uncertainty

with the same shape of the confidence covariance matrix Ω, is this case the

uncertainty set would be:

Qq =

{
q ∈ Rm | (q− q̂)′Ω−1(q− q̂) ≤ χ2

m(α)

N

}
.

Using this uncertainty we can represent the inner problem of (3-2) as

minimize
q

(a + Bq)′x

subject to
∥∥Ω−1/2(q− q̂)

∥∥2

2
≤ χ2

n(α)

N
,

(3-17)

where Ω−1/2 ∈ Rm×m is the lower triangular matrix from the Cholesky

decomposition of Ω−1. Following the methodology in presented Nemirovski

(2013), we find that the closed form solution of the SOCP dual problem as

µ̂′BLx− χ2
m(α)

N

∥∥Ω1/2B′x
∥∥

2
, (3-18)

hence, the robust problem formulation of (3-2) becomes
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minimize
x

x′ΣBLx

subject to µ̂′BLx− χ2
m(α)

N

∥∥Ω1/2B′x
∥∥

2
≥ µ0.

(3-19)

In these two robust models we see a very intuitive interpretation of the

uncertainty set. As the number of forecasters N increases, the uncertainty

set reduces and the robust model converges to the original Black-Litterman

model. However for a small number of forecasters N , the uncertainty set

becomes larger enough to account for possible estimation errors.

In the second case we assume now that we actually have the information

about the covariance matrix of the forecasts. An investor with multiple fore-

casts information may be uncomfortable specifying the average view q̂. Rather,

one might specify an uncertainty set that captures the actual dispersion of the

views and constrain the portfolio to incur in all the possible scenarios set by

the analysts with a particular level of confidence. In this case, the investor

might form a portfolio robust to uncertainty market views.

Suppose that the decision maker believes that the conflicting forecasts

are distributed as a multivariate normal distribution with covariance matrix

Sq and average q̂. Thus, it is natural to assume an ellipsoidal uncertainty set

for the views

Qq =
{
q ∈ Rm | (q− q̂)′S−1

q (q− q̂) ≤ χ2
m(α)

}
.

With this uncertainty set problem (3-2) reduces to the following

minimize
x

x′ΣBLx

subject to µ̂′BLx− χ2
m(α)

∥∥∥S1/2
q B′x

∥∥∥
2
≥ µ0.

(3-20)

Analogous to the models presented in the previous sections, this model

allow to define an uncertainty structure of q that is independent of the inputs

defined in the Black-Litterman model, leading to optimal solutions. In the

next chapters we empirically study each robust model that we have proposed

and present situations where each model might be useful.
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4. Empirical Tests

In this section we empirically study how the models behave with a small

number of forecasters (i.e. 5) as the uncertainty of their views increased by

the parameter, which here we denominate as τq. We also investigate how the

precision on the views influences each robust model and the original Black-

Litterman. The robust approach generalizes the traditional Black-Litterman

methodology, where the uncertainty sets are defined as a single point estimate.

However, the role of these numerical tests is not to evaluate which is the best

model, but rather to help understand when and how each model can be used

as a better alternative.

For simplicity, we consider the scenario where the returns follow a

multivariate normal distribution. Furthermore, we assume that the CAPM

equilibrium model is estimated by a simulated returns from this distribution.

Then, we test the proposed robust models and the original using synthetic

data and manipulated examples. Using this setting, our controlled numerical

tests are divided in two experiments. First, we compare the performance of

the models when views are static and in average correct to a similar case where

the views are static and in average incorrect, for various levels of uncertainty

in the views. This example aims to simulate different scenarios of specialist

views (i.e. correct and incorrect in average) and see how it effects each model.

In our second test we want to measure the actual impact of views’s

accuracy on the expected returns. In this case we consider fixed levels for

the uncertainty parameter τq and stress the accuracy of the forecasts. In this

experiment, we also compare the out of sample performance of the portfolios

using all robust methods. In the next section, we present in detail the

assumptions used in each experiment.



4.1. Experiment Setup

We illustrate both examples using a model with 4 risky assets and a risk-

free asset. To simplify, the rate of return of the risk-free asset is fixed at zero.

We consider that the investor is not allowed to short sell positions, thus the

wealth allocation has the following setting

X =
{
x ∈ R4 | x ≥ 0, 1′x = 1

}
.

The returns of the four risky assets are assumed as multivariate normal.

In percentages, the nominal returns (µ) and variances (σ) of each asset are

taken as

µ = [0.85 0.89 3.87 0.40]′,

σ = [8.7 18.4 26.56 9.56]′,

and, correlation matrix chosen as

C =



1 −0.25 0.45 −0.15

1 −0.35 0.18

1 −0.15

1


.

The assumption of a normal market implies that the mean-variance

framework is the optimal allocation for any set of investor preferences. For

instance, consider a portfolio with target variance σtarget = 8% per annum,

then, the theoretical optimal portfolio would be xopt = (0.27, 0.29, 0.43, 0). We

are interested to see how each model performs under different scenario.

The experiments will go as follows:

– Market and Black-Litterman Assumptions

1. We simulate a sample of N = 60 observations from the multivariate

distribution with mean and covariance matrix as defined;
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2. We maximize the return in the Robust mean-variance Black-

Litterman model for standard deviation target of 8% (i.e. σ ≤ 8%).

3. We set the CAPM as the sample mean and sample covariance matrix

from the simulated data, thus

π = 1
N

∑N
i=1µi,

Σ̂ = 1
N−1

∑N
i=1(µi − µ̄)(µi − µ̄)′,

(4-1)

and the Black-Litterman parameter τ = 0.05 as in He and Litter-

man (1999).

4. We use the same market assumption and optimization model in

both experiments.

– Views and Forecasters Assumptions

1. We assume a scenario of a hedge fund with 5 analysts, where each

of them has two views on the following portfolio P:

P =

1 1 0 −1

0 −1 1 0


2. The views on the aforementioned portfolio are randomly simulated

as the following distribution:

qi = q̂ + eq ∼ N(0, τqPΣP′),

where, τq is the parameter is added to the experiment to control

the dispersion of the views, notice that it is independent of τ

which is a parameter that determines the uncertainty of the average

market equilibrium returns. Therefore, for larger values of τq the

uncertainty sets on the robust models increases correspondingly.

Moreover, the average view controls the accuracy of the forecasts,

for example, when q̂ = Pµ the forecasters are generally correct
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about the returns. The covariance matrix of the forecasters’s views

are not completely random, we assume that it follows the market

dynamics scaled by the uncertainty parameters τq.

3. The confidence matrix for each generated view is defined as Ω =

P(τΣ̂)P′/10, implying a belief ten times stronger than the CAPM

estimate with the same market dynamics.

– Views on Experiment 1 - Sensitivity to Uncertainty of the Views

1. In this experiment we consider two realizations for the average

forecast on the portfolio. In the first scenario, we assume in average

a perfect foresight, therefore, generating unbiased expected returns

in the posterior distribution. For simulations purposes, we consider

that each forecast qi follows a multivariate normal distribution:

qi = Pµ+ eq ∼ N(0, τqPΣP′)

=

2.1

3.0

+ eq ∼ N(0, τqPΣP′).

2. The second setting assumes that analysts are systematically wrong

about their views, which we express as the following

qi =

0

0

+ eq ∼ N(0, τqPΣP′).

The parameter τq defines the size of the uncertainty sets. Our

objective here is to test the uncertainty sets under different values of

τq and from this experiment to have a better understanding of their

benefits. To illustrate, in figure 4.1 we display the 99% confidence

interval of q for τq = {0.1, 0.25}.
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Figure 4.1: Confidence interval for τq.

3. We simulate this experiment for τq varying from 0.005 to 5.

– Views on Experiment 2 - Sensitivity to Accuracy of the Forecasters

1. In the second experiment we consider multiples scenarios for q̂ as

a linear function of the optimal value Pµ. Thus, the views on the

portfolio P are simulated as

qi = q̂(ξq) + eq ∼ N(0, τqPΣP′)

where q̂(ξq) = ξq and ξq is used to control the accuracy of the

forecasters.

2. We perform this experiment varying the accuracy parameter ξq

linearly from −2 to 2.

3. We repeat this experiment for the following values of the uncertainty

parameter: τq = (0.5, 1, 2, 4).

– Simulations and Statistics

1. We simulate the market returns and forecasts 500 times, for each

simulation we calculate the out of sample return and standard

deviation from the optimal strategy;

2. We compute the following statistics from the data set of portfolio

returns:
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– Mean: average observed out of sample portfolio return for 500

simulations;

– Standard deviation: standard deviation of the portfolio return

over all simulations;

– Minimum return and maximum return portfolio returns ob-

served over all simulations;

– Sharpe Ratio: ratio between mean and standard deviation;

– Empirical constraint-violation probability: empirical probabil-

ity that the portfolio out of sample standard deviation goes

above 8%. It is obtained by the ratio between the number

of observations that violated the standard deviation constraint

(i.e. σ > 8%) and the number of simulations (i.e. 500).

– Assumptions on Uncertainty sets

1. Multiple Forecasters: we assume perfect information on all five

views from the simulated forecasters;

2. Bertsimas and Sims uncertainty set: in this case, the investor only

has access to the average, maximum and minimum value of each

view;

3. Ellipsoidal uncertainty set: we use the three proposed models.

Therefore, we assume that the there is only information about

the number of investors and their average view on the simulations

for models 3-16 and 3-19 and for model 3-20 we also assume that

the investor has information about the covariance matrix of the

forecasters. For all models we assume a confidence level α of 0.95;

4. We compare the uncertainty sets under this assumptions against

the original Black-Litterman using the average of all 5 views as an

input.
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4.2. Sensitivity to Uncertainty of the Views

In this section we analyze the results of robust and traditional Black-

Litterman methodologies, when applying the empirical tests from a multivari-

ate Normal distribution. Here, we refer to experiments where the forecasters

are consistently wrong about the views with the label “With bias”, and exper-

iments when on average the forecasters are right about the views as “Without

Bias”. We also distinguish the ellipsoidal uncertainty sets thoughtout the fig-

ures of this section, we use Ellipsoidal (µBL), Ellipsoidal(q) and Ellipsoidal(Sq)

to refer models 3-16, 3-19 and 3-20 from section 3.3.2.

In figure 4.2 we see that with and without bias the average return

decreases as the uncertainty parameter τq grows. This result is expected.

Intuitively as the views get more disperse, we observe a negative impact on

the average out of sample results. However, the impacts change depending on

the robustness of the model and on the precision of the views.

We observe that the average returns of the simulations in the models with

multiple forecasters, Bertsimas uncertainty and Ellipsoidal (Sq) sets are more

sensitive to the uncertainty parameter τq. This is because the uncertainty

sets on these models naturally grow with the dispersion of the views, thus,

making more conservative allocations for a given level of volatility. And, in

both cases the most conservative model (i.e. Bertsimas Γ = 2) presented the

lowest average return. We also observe the impact of the bias on the average

return. With bias on the forecast the models have a high impact in low values

of τq and get more stable as the parameter increases, and Without bias the

average return decreases almost monotonically for all models.

On the other hand, the uncertainty set of the ellipsoidal sets µBL, q and

the original Black-Litterman remains the same for all τq. In this case, the worst

impact is seen when the forecasts are done with bias. Whereas, when the views

are in average right we note that the average returns are almost stable, only

decreasing by a low rate. The stability of the average return also contrasts
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in both tests. In addition, for the value of the parameter τ and confidence of

the views that was assumed, the results suggested that these models are more

vulnerable to the impact of estimation errors of views. These first results

are intended to show the trade-off between performance and robustness. It

becomes clear that the robust models are more conservative, in case of where

the return is maximized and the risk is constrained.
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Figure 4.2: Average return × τq

The empirical probability gives a measure of how the feasibility of the

variance constraint behaves under different possible scenarios. In figure 4.3, we

observe that the empirical probability decreases for the models with multiple

forecasters and Bertsimas and Sim’s uncertainty sets and it drifts upwards for

the other models. As the uncertainty set expands with τq, the robust models

with multiple forecasters and Bertsimas uncertainty set reduces the risk of the

allocations accordingly which increases the chances of an out sample variance

below 8%. Comparing with bias and without bias in these three robust models,

we see a similar graphical pattern to the one observed in figure 4.2. This

empirically shows that there is trade-off between average return and the price

of robustness, which is independent of the bias. Moreover, we note that the

price of robustness observed in the average return of the simulations might

come at low cost for investors with tight volatility constraints.
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Figure 4.3: Empirical probability × τq

In order to obtain a higher average return, the original Black-Litterman

and the robust models with ellipsoidal uncertainty sets q and µBL take more

risk. This is corroborated by the higher levels of out of sample variance and

empirical probabilities that can be seen with and without bias. We observe

the extra risk is taken without taking into account the increasing uncertainty

on the views. As a matter of fact, comparing the behavior of figure 4.3 a)

and figure 4.2 a), we see that the average return is highly penalized, whereas,

the probability of constraint violation slightly increases. These results suggest

that the approaches that considers more information about the forecasters are

more robust to inaccuracy regarding the views.

Visual illustration of the results are presented in figures 4.4 and 4.5. We

have taken τq = 5. In the robust models with Multiple forecasts and Bertsimas

uncertainty sets, we observe a concentration of the sample results around the

8% volatility level. These results are more evident when the forecasters are

biased and on more conservative uncertainty sets (e.g. Bertsimas uncertainty

sets in figure 4.4).
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Figure 4.4: Out of sample standard deviation and portfolio returns without

bias views for τq = 5.

The models with ellipsoidal uncertainty sets (µBL and q) display a more

scattered behavior, similar to the single point average Black-Litterman in figure

4.5. In particular, these results occurred because these robust feasible sets

are a function of the confidence covariance matrix Ω and the parameter τ ,

which remained the same as the accuracy on the views gets worse. Therefore,

the impact of a large uncertainty parameter τq is not incorporated in the

uncertainty sets. Consequently, the empirical probability was higher than

the ones observed on other robust models, as it was previously mentioned.

Furthermore, we see an agglomeration of points around the optimal frontier

in figure 4.4. This is consistent with our intuition, when the investor is on

average correct about his views we would expect a good overall performance.

In figures 4.4 and 4.5, we can visualize these insights.
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Figure 4.5: Out of sample standard deviation and portfolio returns with bias

views for τq = 5.

Figure 4.6 illustrates the evolution of the Sharpe ratio, which measures

the efficiency of the robust models on each assumption. We observe there are

opposite behaviors of the robust Black-Litterman methods as the uncertainty

parameter increases. There are substantial Sharpe ratio loss associated with

both the precision of the views and ignoring its uncertainty structure. Robust

models takes into account τq has a more stable behavior when the views are

biased, we even observe that for large values of τq the Sharpe ratio with or

without bias converges to similar values. However, without bias we note that

these models suffer a stronger impact, which is mostly due to a better overall

result of the ellipsoidal uncertainty sets q, µBL and average Black-Litterman

model under this assumption.
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Figure 4.6: Sharpe Ratio × τq

The results for standard deviation and risk are quite surprising. In

figure 4.7, we see that as τq increases the standard deviation of models

Multiple Forecasters, Bertsimas and Ellipsoidal(Sq) converges to almost the

same values with and without bias. The robustness becomes more apparent

as the uncertainty in that view increases. In special, Bertsimas Γ = 2 has

the lowest standard deviation when the views are biased. It is interesting to

note that the largest uncertainty set becomes more conservative as uncertainty

grows protecting against worst-case realizations of asset’s returns.

As τq increases, all three models that do not consider the uncertainty

in the views have a lower standard deviation for unbiased forecasters. Note,

however, in the biased scenario the standard deviation is higher compared to

the robust models and never stabilizes, it keeps increasing as τq goes to 5.

These results suggest that the robust approaches are appropriate to deal with

inaccuracy and uncertainty in the views.
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Figure 4.7: Standard deviation of the simulations × τq

Summarizing, we observe that the performance indicator of both original

and robust Black-Litterman strategies are very sensitive to the uncertainty of

the views. Specifically, the original model perform poorly when the views are

biased and well when the forecasters are generally correct. We also see that the

robust models outperforms when the views are generally incorrect (i.e. with

bias) and the performance gap becomes wider when the uncertainty parameter

τq increases. This insights may provide considerable benefits for investors that

use the Black-Litterman model on their investment strategy.

4.3. Sensitivity to Accuracy of the Forecasters

In this section we test the point estimates for the classical Black-

Litterman and our robust Black-Litterman models for different levels of

accuracy on the views. The data used on the simulations are obtained from the

data we simulate as described in section 4.1. Besides comparing the models on

accuracy basis, we also check our insights for various levels of views’s dispersion

(i.e. τq). However, most of the results on the topic were presented on the

previous section.

In figure 4.8 we investigate the empirical performance of our simulations.

We also note that ξq = 0 is a turning point of our simulations, which is when

robust models that consider views’s dispersion start to perform worse. The

48



reason is that, all of our hypothetical assets have positive expected return,

thus, when the accuracy parameter (ξq) takes positive value the average view

begins to capture the true direction of the returns. We would argue that this

region is possibly the most realistic dynamic faced by practitioners, where

market bets fluctuate between right and wrong directions. At this value of ξq,

we see a clear different of behavior on all statistical metrics.

An intuitive insight from this experiment is that, the relative advantage

of the robust Black-Litterman strategies to the traditional one depends on

both the precision of the views and its dispersion. From the Black-Litterman

models that does not incorporate views’s uncertainty structure (i.e. Average,

Ellipsoidal (q) and Ellipsoidal (µBL), we observe that the precision is only

relevant factor for the performance. In fact, there is minimal impact on the

average performance as τq varies. This behavior, however, is not observed on

other robust models. On these models we see that they do not tilt as much on

the exposure of the precision parameter.
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Figure 4.8: Average return of the simulations x ξq

For Bertsimas and Sim, Multiple Forecasters and Elipsoidal(q) we observe

a similar pattern on the average returns. For these models the average return
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is not only a function of the accuracy factor ξq, there is also a substantial part

of the impact comes from the dispersion of the forecasters. In relative terms,

we have that for ξq below zero the the average return is higher for greater

levels of τq. On the other hand, we observe the opposite behavior when ξq

is positive, the size of the uncertainty set has a negative contribution on the

performance. This corroborates with the idea we have mentioned about the

cost of robustness.
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Figure 4.9: Standard deviation of the simulations × ξq

We plot in figure 4.9 the standard deviation of the simulations as a

function of the accuracy parameter ξq. Analogous to the results from the

previous section, using the uncertainty structure of the views results on a

more stable out of sample standard deviation. This general fact is observable

in all considered robustifications that acknowledge the uncertainty structure,

independently of the particular specification of the employed uncertainty set

and degree of dispersion τq.

A more interesting finding is observed for values of ξq around zero. As we

mentioned, this is a transition region of forecasts direction of the actual returns.

In this region the original Black-Litterman model have a spike of volatility,
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which is due to the uncertainty around actual direction of the market’s views.

However, robust models have a smooth volatility transition around this region.

These results empirically confirm an intuitive understanding that the robust

strategy less sensitive to the accuracy of the views.
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Figure 4.10: Sharpe ratio × ξq
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Figure 4.11: Empirical probability of the simulations × ξq
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Figures 4.10 and 4.11 we plot the Sharpe ratio and empirical probability.

These plots support the following observations:

(a) The robust strategies that consider the structure of the views have higher

Sharpe ratios around ξq = 0 mark and lower ratios on extreme values of

the parameter. For positive values of ξq it is mostly due to the better

performance of the less robust models and the original Black-Litterman.

Moreover, as the accuracy parameter assumes negative values the higher

Sharpe ratio comes from the low volatility of these strategies, which

actually have lower average return compared to the other models;

(b) The empirical probability is significantly dependent on the level of robust-

ness. For larger uncertainty sets we observe a lower empirical probability

in the results of figure 4.11. For example, we note that the empirical prob-

ability of the most robust model Bertsimas with Γ = 2 lower bounds all

other models on most part of our simulations. We also observe a reduction

of the empirical probability around ξq equal zero and as τq increases.

The results presented in this section demonstrate several important

points. First, our argument of the importance of considering a robust structure

on the views of the Black-Litterman model. As we have show empirically,

its influence can substantially effect both the standard deviation and average

return of the portfolio. Second, our observations have shown that increasing

the robustness of views decrease the performance dependency on the accuracy

of the forecasts. Also, we have seen that the robust formulation has a cost when

the forecasters are in general correct, a price to pay to be insured on multiple

market views. Moreover, the robustness effect becomes more apparent when

multiple forecasters are uncertain about the direction of the returns, which is

the case for ξq equal to zero. Finally, To restate the computational tractability

of our robust formulation, we generate a fictitious problem with 100 risky assets

and 100 absolute views.
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5. Conclusions

The aim of the work was to further the understanding of robust asset

allocation, in particular, we propose a robust approach to the Black-Litterman

to asset allocation model. We have also extended the Black–Litterman

methodology using recent developments of robust optimization techniques to

introduce conflicting source of input views. The major distinction between the

approaches is that the first allows investor to input a single point estimation

for the views, whereas the second allows to create a uncertainty sets on these

inputs.

Further we studied properties of the original and robust Black-Litterman

models for various degrees of accuracy and dispersion of the input views.

Through empirical results on synthetic data we have showed situation which

the robust model can benefit from this new setting. Computational evidence

suggests that the robust approaches provide certain benefits on the perfor-

mance over the traditional model, especially in scenarios where views are not

known with accuracy. We also observed that the robust models are less volatile

in two situations, when the forecasters are uncertain about the direction of the

market and when the uncertainty sets of the views are large.

We believe that these robust formulations, given its simplicity provide

a feasible strategy to practitioners incorporate on their Black-Litterman allo-

cations. In addition, for future work one might consider modeling the uncer-

tainty sets in a purely data-drive methodology. We also encourage to use other

sources of data sets from macroeconomic surveys from different countries to

further compare the models. The models in this thesis are all related to uncer-

tainty on the views for multiple forecasters, one can also study the impact of

the CAPM on the Black-Litterman model and how a robust formulation can

help mitigate estimation error and improve performance.
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