ABSTRACT

The present work proposes an application of a non-parametric methodology to extract the
risk-neutral probability density function (RND) to USD/BRL options. This methodology
consists in complementing the RND extracted from the implied volatility smile with tails
drawn from a GEV (generalized extreme value) distribution. These non-parametrics risk-
neutral densities are compared to parametric distributions that are frequently mentioned in
the literature - specifically, the mixture of log-normal densities (MLN) and the generalized
beta of second kind (GB2) - through a study of their moments. The present work proposes
a straightforward methodology to apply the estimated moments for trading of USD/BRL
futures, finding strategies that produce greater returns relative to a simple buy and hold

strategy.
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trading.



RESUMO

O presente trabalho propde a aplicagdo de uma metodologia ndo paramétrica para extracao
da medida de probabilidade neutra ao risco para opgoes sobre taxa de cambio de reais
por délar dos Estados Unidos USD/BRL. Esta metodologia consiste em complementar a
funcao de densidade de probabilidade extraida a partir do smile de volatilidade implicita
utilizando as caudas de uma distribuicdo GVE (generalizada de valores extremos). Estas
densidades neutras ao risco nao parametricas sao comparadas com distribui¢oes paramet-
ricas frequentemente discutidas na literatura - especificamente, a mistura de densidades
log-normais (MLN) e a beta generalizada de segundo tipo (GB2) - através do estudo
de seus momentos. O presente trabalho propoe uma metodologia simples para aplicacao
desses momentos para fins de trading de contratos futuros de taxa de cambio USD/BRL,

encontrando retornos superiores a uma estratégia buy and hold simples.

Palavras-chave: Densidade neutra ao risco. Volatilidade implicita. Opgoes de USD/BRL.
Distribuicao generalizada de valores extremos. Mistura de densidades log-normais. Dis-

tribuicao generalizada beta de segundo tipo. Trading de futuros.
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1 Introduction

Over the past decades, the understanding of financial markets’ behaviour and
expectations became evermore important, as the interconnectedness between markets’
dynamics and domestic/international economics increased substantially. Investors, scholars
and policy makers have increasingly been looking at ways to correctly assess the market’s
relative probabilities attributed to different future scenarios for a given asset, in order to

improve decision taking in several areas.

In this sense, the concept of the risk-neutral probability density function of an asset
arises as an appealing approach to obtaining such understanding of the markets’ sentiment.
Under a number of assumptions, the risk-neutral density maps the probabilities associated
with different prices of an asset at a given maturity. With the complete distribution
of probabilities in hands for different maturities, it is possible to measure its evolution
through time and the impact of information shocks on its shape. The applications of the
risk-neutral density are numerous, ranging from pricing of derivatives of that underlying
asset, to assessment of market’s expectations (for instance, the VIX index) in the context

of central bank policy making and even for trading.

There is no single framework for extracting an asset’s risk-neutral density function,
and the existing ones can be divided into two main categories: one that assumes that the
underlying density function has a known functional form and revolves around finding the
parameters that best fit a set of theoretical options with respect to observable options; and
other that does not assume any particular shape for the bulk of density function, but rather
make assumptions on the shape of its tails in order to retrieve a complete distribution, as
it fills the lack of (reliable) data from away-from-the-money options. These frameworks
arc commonly referred as parametric and non-parametric approaches to extracting a

risk-neutral density, with both having theoretical and practical advantages.

In the case of Brazilian assets, the discussions regarding the extraction of the
risk-neutral density have been focused predominantly on the USD/BRL - mostly due to
the market’s importance and the more prominent liquidity of its options. These works
have focused on parametric techniques. The first goal of this work is to present a non-
parametric approach to extracting the risk-neutral density that draws the tails of the
density from a generalized extreme value (GEV) distribution. Afterwards we compare
the results obtained with two of the main parametric distributions used for modelling
the USD/BRL risk-neutral density, namely, the generalized beta of second kind and the

mixture of log-normal distributions.

After presenting and discussing the three techniques mentioned, the second goal of
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this work is to test whether it is possible to use the informational content of the risk-neutral
densities (captured via the estimation of its variance, skewness and kurtosis) for trading.
In other words, we look for using the moments of the risk-neutral densities to build a
trading strategy for USD/BRL itself.

The work is divided in the following way: in Chapter 2, the literature regarding
the extraction of the risk-neutral density is reviewed. Chapter 3 presents in-depth the
theoretical framework behind the techniques used to extract the risk-neutral density
functions. Chapter 4 discusses the methodology used to apply these frameworks for
USD/BRL and the estimation of its moments. Chapter 5 presents the trading model
adopted and the returns obtained by applying it to the moments previously estimated;

and Chapter 6 presents the conclusions and final remarks.
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2 Literature Overview

Back in 1973, Black and Scholes published a seminal work where they presented
to the world an explicit formula to calculate the price of European options based on
a number of parameters and a continuous-time economy (BLACK; SCHOLES, 1973).
While the volatility of the underlying asset until maturity was an unobservable input of
the model, the option prices were directly observable in the market; when these were
input in the Black-Scholes framework, the ‘implied volatility’ could be extracted. However,
although the original Black-Scholes model assumed that the asset’s volatility until maturity
was constant for all strikes, different implied volatilities could be observed for different
observable strikes with the same maturity - revealing an inconsistency in the original

model proposed.

The observation of such phenomenon led to the development of the concept of the
implied volatility smile - the collection of implied volatilities extracted from options with
different strikes and the same maturity - and the implied volatility surface - the collection of
smiles for different maturities. Irrespective of the inconsistencies found, traders continued
to resort to the Black-Scholes framework as a way to guarantee standardization and pricing
consistency across different products, which would be latter called the ‘practitioner’s Black

and Scholes’ approach.

As the studies regarding the options market advanced, it became clear that a
collection of option prices for the same maturity revealed a lot more about the market’s
assumptions and preferences than just the implied volatility smile. Should this collection
of prices respect the principle of convexity !, when the future expected pay-offs are taken
at present using the risk-free rate, the risk-neutral probability density function can be
computed straightforwardly. As noted by Breeden and Litzenberger (1978), the extraction
of the options’ underlying probability distribution does not rely on any assumptions on
the stochastic process governing the asset nor on the pricing model adopted. Rather,
the authors show that a risk-neutral probability function is simply the second partial
derivative of (a continuum of) Furopean call option prices with respect to their strikes.
As the difference between strikes tend to zero, these second derivatives become the
Arrow-Debreu ‘elementary’ state contingent-claim (BAHRA, 1997).

The possibility to extract the market’s risk-neutral probability density function
(commonly referred as the risk-neutral density, or henceforth simply as ‘RND’) is a powerful
feature, as it captures the market’s expectations and risk preferences for a given time

horizon. Given the different applications for such tool, a considerable number of research

1 This property that was proven by Merton (1973).



Chapter 2. Literature Qverview 14

works have delved onto how to extract, fit and apply risk-neutral densities.

In this regard, Jackwerth (2004) and Figlewski (2018) provide a comprehensive
summary of the main publications on this topic and their conclusions. They both note
that the extraction of the RNDs using option prices can be organized into two different
categories: a parametric approach and a non-parametric one. The former chooses a
probability distribution with a closed functional form to price options for different strikes,
with its parameters being optimized to minimize the difference between the theoretical and
actual prices. The latter makes no assumption on the distribution governing the underlying
stochastic process. The most relevant parametric and non-parametric approaches to

modelling the underlying risk-neutral probability distributions will be discussed as follows.

2.1 Parametric approaches

Several works have tried to overcome the drawbacks of the original Black-Scholes
model while still remaining under the Gaussian distributions framework, whether by
making changes in the underlying process or generalizing the shape of the RND. Following
the line of work of previous publications that highlight pricing inconsistencies in the
original Black-Scholes framework, Corrado and Su (1996) propose a Gram-Charlie series
expansion of the Normal distribution of log-prices in order to arrive in a new pricing

equation.

Bahra (1997), on the other hand, notes that drawing assumptions for the shape
of the RND is more general than assuming which stochastic process drives prices of
the underlying asset: a given terminal distribution can be generated by several different
stochastic processes, while a single process can only generate one distribution. As the
author stresses out that financial assets’ price distributions are in the neighbourhood of the
log-normal one, he chooses to model the final distribution as a mixture of two log-normal
distributions, deriving closed formulas for the prices of European calls and put options.
With this, it is possible to minimize the sum of squared errors between the theoretical and
actual option prices by altering the five parameters that describe the distributions and by
setting the interest rate to the observable market rate. The combination of parameters
that optimize this minimization problem can therefore completely describe the risk-neutral

density.

Bliss and Panigirtzoglou (2002) also choose the mixture of two log-normal dis-
tributions as the parametric framework to fit FTSE option data and compare with a
non-parametric approach presented by them. They find strong evidence of the superior

stability of the latter when shocks are applied to the prices and the RNDs are re-estimated.

Liu et al. (2007) compare the results obtained from the mixture of two log-normal
densities (MLN) with the generalized beta of second kind (GB2) distribution. Their
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focus is to analyse the transformation from risk-neutral density functions into ‘real-world’
densities by assuming a power utility function for the representative agent (similarly to
Bliss and Panigirtzoglou (2002)). They note that the GB2 density allows for a convenient

transformation between probability density functions.

Fabozzi, Tunaru and Albota (2009) compare several different parametric distribu-
tions when looking at interest rate options. The authors derive closed formulas for call
and put prices under the Weibull, generalized beta of second kind and generalized gamma
distributions, and find the distribution parameters that minimize an error function that
accounts for the difference between model and actual option prices. They argue that the
generalized gamma distribution provides a stable distribution with less parameters (3

rather than 4) than the more commonly used GB2 distribution.

2.2 Non-parametric approaches

The Breeden and Litzenberger result can be considered the cornerstone of any
non-parametric approach to extracting the risk-neutral density function. However, in order
to obtain a continuum of option prices that allow to calculate the price of Arrow-Debreu
securities?, some interpolation technique has to be applied in order to fill the gaps between
the (discrete) observable option prices. Bates (1991) applies a constrained cubic spline in
the ratio of S&P 500 option prices to future prices in order to obtain enough interpolated

points to proceed with the extraction of a RND.

Shimko (1993), on the other hand, states that smoother results can be achieved by
interpolating implied volatility smiles, rather than the collection of available call option
prices, as the volatility smile provides a more well-behaved space. He fits the implied
volatilities with a least-squares quadratic equation that does not require that the estimated
function necessarily goes through the data points, and inputs the estimated implied
volatilities into the Black-Scholes model to obtain the equivalent prices and the RND.
The option to use the Black-Scholes formula to retrieve prices does not require it to be
true, as it works simply as a transformation device that allows the interpolation to be
conducted in implied volatility measurement space (BAHRA, 1997); (FIGLEWSKI, 2008).
After the risk-neutral distribution is obtained from prices, Shimko assumes the tails of the

distribution to be log-normal in points beyond the range of traded strikes.

Malz (1997) also proposes to fill the discontinuity between traded options by
interpolating the implied volatility smile — in his case, looking at over-the-counter currency
options market. He stresses out that differently from other assets such as equities, the

convention in the foreign exchange (FX) market is to refer to implied volatilities in terms

2 Arrow-Debreu securities are securities whose pay-off is equal to one unit if a specific state materialize,

and zero otherwise.
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of the option delta (the first derivative of the option price with respect to the underlying
asset’s price), rather than strikes. Given this, he opts to interpolate the implied volatility
smile in the volatility /option delta space by combining option structures such as strangles
and risk reversals along with at-the-money (ATM) implied volatility. After a continuous
function in the implied volatility smile is produced, the volatilities are translated to
volatility /option strike space. The standard Black-Scholes formula is used to obtain the
prices that will be used to apply the Breeden-Litzenberger result.

This quadratic function fit technique on the implied volatility /option delta space is
compared to Shimko’s approach to apply the same framework in the implied volatility /op-
tion strike space. While the estimated implied volatilities coincide around the at-the-money,
Malz points that the framework of Shimko tends to overestimate volatilities for very low
and high deltas, leading to price estimates that have substantially higher estimating errors

when compared to actual market prices.

When conducting a non-parametric estimation of the RND, there is a trade-off
between smoothness of the interpolated volatility smile and the goodness of fit of estimates
in points where market prices are observable. A standard cubic spline, for instance, would
require the interpolating function to be continuous at all data points, thus incorporating
market micro-structure’s noise into the estimation of the density function (FIGLEWSKI,
2008). Bliss and Panigirtzoglou (2002) propose to use a natural cubic spline with a
smoothness penalty parameter that impacts the curvature of the piece-wise function —

with the goal of balancing the smoothness and goodness of fit of the interpolated curve.

According to Jackwerth (2004), while frameworks based on curve-fitting of the
implied volatility smile tend to be the most stable ones to extract risk-neutral densities,
their results will yield very similar estimates for the center of the distributions and the
differences will occur mostly in the tails. He proposes to minimize the difference between
the estimated and observed implied volatilities through a function with a specific functional
form that takes into consideration the second derivatives of these implied volatilities and
includes an ad-hoc smoothness parameter (or trade-off parameter). The first and last
estimated implied volatilities are extrapolated outside the estimation range. He then
calculates the Black-Scholes price associated with each implied volatility, and ‘re-weights’

each price so that the probabilities sum to one for the complete RND.

Figlewski (2008) also argues for the use of a smoothing spline to interpolate the
volatility smile. In order to allow greater flexibility in the estimated function, he opts
to conduct the interpolation with a fourth degree spline where the only point where
the function necessarily goes through the data (referred as a ‘knot’) is placed ATM.
Additionally, the author also takes advantage of the availability of information on bid-offer
spreads in S&P 500 options to further treat the data: weighting parameters are added in

the interpolated function so as to give more importance to estimates that fall within the
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bid-offer spread than those that don’t. Moreover, given that the lack of liquidity of deep
out of the money (OTM) options might affect the estimation of the RND, the bid-offer
spreads are also used to trim the volatility smile according an ad-hoc maximum spread
value. Finally, the tails of the estimated distribution are drawn according to the GEV

distribution, as opposed to the log-normal choice adopted in previous works.

2.3  The case of Brazilian assets

The issue of estimating the RND of Brazilian financial assets has been mostly

tackled using parametric frameworks.

Tabak and Chang (2002) extract the risk-neutral density function from USD/BRL
options non-parametrically: they map out implied volatilities in the implied volatility /op-
tion strike space from actual prices and estimate additional points from the available
information using a quadratic regression. The authors process the interpolation with as
few as three points, which may carry a low information content about the underlying
asset. The option prices are then calculated by inputting the estimated implied volatilities
into the Garman-Kohalgen pricing model and applying the Breeden-Litzenberger result
(GARMAN; KOHLHAGEN, 1983).

Abe, Chang and Tabak (2007) choose to use the GB2 distribution to parametrically
estimate the risk-neutral density function for USD/BRL options between 2000 and 2005,
as this particular distribution allows for a straightforward estimation of the ‘real-world’
probability density function and the risk-aversion parameter. They extract the closed-
formulas for call and put options and then estimate these parameters by minimizing
the sum of squared differences between theoretical and actual option prices. Then, after
producing monthly estimates of the RND for one-month maturity options, the authors test
whether the estimated density functions produce accurate interval forecasts for USD/BRL,

with mixed conclusions.

Ornelas, Fajardo and Farias (2012) estimate the RND implied in USD/BRL options
between 1999 and 2010 using the framework of the mixture of two log-normal distributions.
Then, they assume that the representative agent has power utility function and constant
relative risk aversion, and proceed to estimate the real-world probability distribution
function based on these assumptions. The authors conclude that the real-world density

produces better density forecasts than the RND.

The work of Santos and Guerra (2015) provides an interesting comparison between
different RND estimation methods and results when applied to USD/BRL. First, the
authors apply the Heston stochastic volatility pricing model in order to obtain what is
referred as the ‘true’ risk-neutral density function (HESTON, 1993). Then, other RNDs are

estimated with parametric frameworks such as the mixture of two log-normal densities, the
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density function based on confluent hypergeometric expansion, the Edgeworth expansion,
and the non-parametric framework of the interpolated implied volatility smile proposed
by Bliss and Panigirtzoglou (2002). Santos and Guerra use the period of June 2006 to

January 2010 to conduct estimations.

In order to compare the different methodologies, the authors input into the Heston
model a set of parameters according to scenarios for different regimes of volatility and
skewness of USD/BRL. Then, the call options are priced according to the closed-formula
proposed by the Heston framework under each scenario, and a random noise perturbation
is added to these prices. The RNDs are generated by applying the parametric and non-
parametric methodologies listed above to this set of shocked option prices, and these
resulting densities are compared to the ‘true’ ones (generated by Heston model) to measure
accuracy and stability. The comparisons are made by measuring the summary statistics
(mean, variance, skewness and kurtosis) of the estimated and ‘true’ RND, as well as the
root mean integrated squared error. They conclude that the mixture of two log-normal
and the density functional based on confluent hypergeometric expansion provide the most
accurate estimates, while the smoothed implied volatility smile proved to be the most

stable method and the one that produced most accurate variance estimates.
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3 Theoretical Framework

The goal of the present work is to propose a framework to extract the risk-neutral
probability distribution function non-parametrically — that is, without previously assuming
any functional form for probability distribution — and to complement such estimation with
distribution tails assuming the shape of the GEV distribution. The resulting distribution
will then be compared to more-often used parametric frameworks such as the MLN and

the GB2, which will be more profoundly discussed in Section 3.4.

This chapter will discuss in depth the theoretical framework behind the extraction
of the risk-neutral probability densities used on this work. Also will be highlighted the
methodological choices that were taken in order to make such process viable. Then, the

practical details behind the implementation of such model will be laid out in Chapter 4.

3.1 The underlying risk-neutral probability density

Options are derivatives that allow the buyer the possibility to buy or to sell a
quantity of the underlying asset for a pre-determined price if it desires to do so, in exchange
of a price (or premium) for this optionality. The characteristics of option contracts give
market agents the possibility to build flexible future pay-offs according to the desires to
increase or mitigate exposure in a certain asset under specific conditions. The fact that
the option prices are determined by supply and demand in market places means that the
agents’ perceived likelihood that a scenario materializes will vary along with the price

paid for options that reflect such outcome.

In this sense, the price of an option at time ¢ for the underlying asset S, strike K

and maturity 7' can be written as:

Ct, T, K) = ¢ T /K "~ F(S0)(Sp — K) dSr, (3.1)
K
P(t,T,K) = ¢ 7T L F(Sr)(K — Sy)dSy, (3.2)

where C(t,T,K) and P(t,T,K) are, respectively, the prices of European calls and puts, r
is the risk-free interest rate, St is the price observed for S at time T, and f(Sr) is the

risk-neutral probability density function for St.

As shown in Breeden and Litzenberger (1978), if we twice differentiate the pricing
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formula (3.1) with respect to K, we arrive at the following relationship:

02C
0K?
where we are able to extract the risk-neutral density function directly from a continuum

=T f(K), (3.3)

of option prices. As the authors note, no assumptions regarding the underlying price’s
dynamics or the density function were made: it is only assumed that markets are perfect
(that is, transaction costs are nil, short sales are allowed to unlimited quantities and
borrowing can be made with the riskless interest rate) and that in the continuous case,

the risk-neutral density function is twice differentiable.

In practice, observable option prices will not be available for a continuum of strikes,
but rather only for a discrete number of observations that reflect liquidity aspects and
market-specific conventions. In this case, the link between the available option prices and
the risk-neutral density function will be presented by state-contingent prices or Arrow-
Debreu prices — that is, prices that are equal to one unit if a specific state materialize,

and zero otherwise.

It is possible to generate an Arrow-Debreu type of pay-off by building a butterfly
spread between options with the same maturity and subsequent strikes. A pay-off of a
butterfly structure centred around theoretical strike K = 2 is graphically represented in
the Figure 1. With a simple combination of call options, it was possible to generate a

structure whose pay-off is equal to 1 when K = 2, and 0 otherwise.
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Figure 1 — Pay-off of the combined call option structures.

More generally, if we assume a step size of AM, a portfolio that has a payoff of 1
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at K and 0 otherwise can be written as:

P(K,T,AM) [c(K — AM,T) —2¢(K,T) + c(K + AM,T)]

AM (AM)?

By dividing the portfolio price by step size and taking the limit where the step size
AM goes to zero, Breeden and Litzenberger show that:

Lo PIETAM)  9C
A0 AM ~ OK?

. (3.4)
K=M
That is, by taking infinitely small steps and pricing butterflies for a continuum of

states, we have the complete state pricing function.

3.2 Filling the gaps between observable option prices

The result obtained in equation (3.3) is powerful, in the sense that one may obtain
the market’s complete distribution of probabilities for a given maturity by constructing
simple portfolios of options without making assumptions on the underlying process govern-
ing the asset prices. This is an interesting feature of a non-parametric framework, as there
is no ez-ante reason to believe that a risk-neutral probability distribution would follow

any known parametric distribution.

However, while non-parametrically estimating the state pricing function allows for
additional degrees of freedom in shape the distribution, two main hurdles in the estimation
immediately arise. First, as noted before, only a handful of strikes are traded in the
market for a given maturity, thus requiring some type of interpolating function in order to

approximate prices in between observable data points.

Second, the estimation of the probability density function will only be possible
up to the last strike observed, and the absence of deep in-the-money (ITM) and OTM
data points will make the estimation of the tails of the distribution impossible without an

extrapolation technique or additional assumptions regarding its shapes.

Regarding the interpolation of the observable option prices, the choice of technique
will vary depending on the data available: by taking into account market microstructure’s
‘noises’ such as bid-offer spreads (rather than mid prices) and/or price quotes from different
time periods within a day, for instance, it may be required that the data is smoothed out

prior to the estimation of the density function.

The interpolated points also have to be controlled for respecting the no-arbitrage
conditions as put out originally by Merton (1973) — that is, respecting the principle of
monotonicity (two Kuropean calls with same maturity and increasing strikes should be

necessarily decreasing in price) and convexity (all the butterflies for a given maturity
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should be convex with respect to strikes). The convexity arbitrage condition is particularly
important in the context of risk-neutral density functions, as applying the result of equation
(3.4) in a non-convex case would translate into negative probabilities in the RND. Therefore,
there is an underlying trade-off between the accuracy and smoothness of the estimated

option prices relative to the original data.

Several works have presented a number of different approaches to interpolate the
existing data points and thus obtain more observations for the estimation of the RND.
While the work of Bates (1991) focused on obtaining an interpolating function between
observable prices in the price/option strike space, Shimko (1993) indicated that this

estimation should rather be conducted in the implied volatility /option strike space.

This is a naturally smoother function, as in practice market participants see the
prices as almost as a ‘numerical transformation’ of the more-informational implied volatility
surface. Since this work was published, the focus of the non-parametric estimations of
the RND has almost entirely shifted into interpolating the implied volatility smile. After
the work of Malz (1997), some papers opted to work with implied volatility /option delta.
For the purposes of the methodology of the present work, a vector of implied volatilities
calculated from observable option prices will be the object of interpolation and treatment
in order to extract the RND.

In this regard, Bliss and Panigirtzoglou (2002) argue for the use of a natural cubic
spline with a penalty parameter A that gives more or less weight to the smoothness of the
estimated piecewise function, depending on the value it assumes. The minimization also
takes into consideration a weighting parameter, which they proposed to use the options’
vega (the first derivative of the option price with respect to the volatility) in order to
give more importance for observations that are closer to being ATM. The concept of a
smoothing parameter is also adopted by Jackwerth (2004). While Figlewski (2008) opts
for the use of a fourth degree polynomial to obtain smoothness, he imposes the condition

that the estimated function necessarily go through one point (knot) placed at-the-money.

In this work, we chose to follow the methodology proposed by Bliss and Panigirt-
zoglou (2002) - also adopted in Santos and Guerra (2015) —, of using the natural smoothing
spline while accounting for the use of ad-hoc knots as proposed by Figlewski (2008). The

k-th order spline function is first described as:

k
67(0) = > an(0i — 0, 1)" + axy1, (3.5)

n=1
where 0 can be a sequence of strikes or deltas, depending on how the implied volatility
smile is represented. For a given vector of parameters a that determine the cubic spline

and a spline function f(6,a), the smoothing spline results from the following function
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minimization:

min wZZ( —6;) +)\/ (f"(6,a))*dd, (3.6)

where w; is the relative weight attributed to each observation and A is the smoothing
penalty parameter. By altering the weight vector w, the knots where the function goes
through the data can be promptly determined and adjusted. Conversely, A controls the
smoothness of the function by multiplying a measure of the degree of the curvature of the
function. The combination of both parameters allow for a greater flexibility in determining
the shape of the interpolating function. The choice of parameters for the present work is

related to the type of data used in this work, and will be discussed in detail in Chapter 4.

After the smoothing spline function is estimated from the observable implied
volatility data points, it is trivial to estimate other implied volatility points from the
function and populate the implied volatility smile with infinitely small changes in 6,
whether it is strike or delta. The new vector of implied volatilities may now be inputted
into the Black-Scholes model to obtain the equivalent prices and the RND via relationship
(3.4). This does not require the Black-Scholes formula to be true, as it works simply as

a transformation device from the implied volatility measurement space back into prices
(BAHRA, 1997);(FIGLEWSKI, 2008).

3.3 Treating the tails of the risk-neutral density function

As previously mentioned, one of the shortfalls of the non-parametric extraction
of the risk-neutral density function is that the mapping of the function near its tails is
dependent on information of deep ITM and OTM options. Given that these tend to be
less liquid than the ones close-to-the-money, the estimation of the RND will be incomplete
without making additional assumptions. A natural candidate to complete the tails of the
RND is to assume log-normal tails by extrapolating the implied volatilities outside of the
range of available information (SHIMKO, 1993); (JACKWERTH, 2004).

However, as noted in Figlewski (2008), the abundant evidence of fat tails in empirical
return distributions make this a suboptimal choice, particularly if the end-goal of the
estimation of the RND is to assess extreme events. Thus, the alternative proposed — which
will be adopted in this work — is to draw the tails from the GEV distribution.

The author’s choice for this specific distribution is based on the Fisher-Tippet
theorem, stating that “under weak regularity conditions the largest value in a sample
drawn from an unknown distribution will converge in distribution to one of three types

of probability laws, all of which belong to the GEV family”. This feature of the GEV

distribution is therefore ideal to model the tails of a distribution.
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The cumulative density function of the GEV has the following form:

exp[~(1+26)7%] HEA0  Sr—p
exp[—exp(—2)] if&=0 7 g

F(z,€) = : (3.7)
with © and o serving as location and scale parameter, respectively. The parameter £ is
related to the shape of the distribution, assuming the form either of the Frechet distribution
with heavy tails (£ > 0), the Gumbel distribution (£ = 0) or the Weibull distribution
(€ < 0). The probability density function of the GEV has the following form:

[(1+26) 7 €] exp[— (1 +26) %] if £ #0

f(Z,f) = (38)

Al 9l

exp(—z) exp|—exp(—2z)] itE=0

Following the notation adopted in Figlewski (2008), let us denote Fepp(.) and fem,(.)
as the empirical cumulative density function (CDF) and probability distribution function
(PDF) estimated via the interpolation of the implied volatility smile. If we consider a as a

quantile of the empirical cumulative density function, that is,
Fop(K (o)) = a,

we should choose two significance levels oy and as that are simultaneously close to the

tails of the empirical distribution and existent for both the right and left tails - that is,
O-/IL:l_O-/lR and Oéngl—OégR.

These will serve as connection points where both the empirical non-parametric RND and

the estimated GEV functions will be evaluated.

In order for the GEV density function to serve as the right tail of the non-parametric

RND, it has to meet the following conditions:

Fepvr (K(air)) = aur
Jaevr)(K(our)) = fempr)(K(a1r)) (3.9)
fGEV(R)(K(OézR)) = femp(R)(K(azR))

That is, the GEV CDF should have its ajg-th quantile at point K (a;g) and the
GEV PDF has to be equal to the empirical probability density function when evaluated at

points a1 and asg. Similar conditions have to be met for the left tail:

Fepvi)(=K(air)) =1 —aig
fervy (=K (aur)) = fempr)(K (1)) (3.10)
farv)(=K(azr)) = fempr)(K(asr))
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The parameter vector © = [, 0, ] that describes the GEV distribution is the result

of the following minimization problem:

IIl@iH (FGEV(K(OQ)) —041)2 (311)

Subject to constraints (3.9) and (3.10), depending on which tail is being evaluated.

Figure 2 below shows a generic non-parametric risk-neutral density function ex-
tracted from a collection of option prices. By solving the minimization (3.11) and constraints
(3.9) and (3.10), it is possible to estimate the GEV distributions that best fit the right

and left tails of the distribution. The result is shown in Figure 3.

— Mon-parametric RND

Probakility

Call option strikes

Figure 2 — Generic non-parametric RND estimated from a collection of option prices.
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— MNon-parametric RND
Left tail - GEV distribution
—— Right tail - GEV distribution

Frobahility

Call option strikes

Figure 3 — GEV tails estimated from the truncated non-parametric RND.

Once the optimal parameters ©* = [u*, 0*, £*] are used to build the GEV distribu-
tions, the non-parametric RND will be truncated at points a1z and a4 and replaced by
the GEV for K > K(ag) and K < K(a1z).

The newly estimated risk-neutral probability density function should be standard-
ized by dividing each observation by the sum of all observations, so that all probabil-
ities integrate to one (JACKWERTH, 2004). This yields a complete distribution that
is estimated both non-parametrically by interpolating the implied volatility smile and

parametrically via the adoption of tails that come from a GEV distribution.

3.4 The parametric estimations of the RND

So far, the extraction of the risk-neutral probability density function was discussed
under non-parametric techniques, that is, without making assumptions regarding the form
of the distribution. While this type of framework allows for greater flexibility in the shape
of the RND, it also requires that the proper treatment for the distribution tails is applied.

and creates additional hurdles to estimate the moments of the distribution.

In that regard, assuming that the risk-neutral density function has a parametric
functional form has its advantages, as this type of framework will always yield a complete
distribution (rather than a truncated one) whose moments can be calculated based on the
estimated parameters. Thus, the goal of any parametric extraction of the RND revolves
around finding a distribution (or combination of distributions) that allows for enough

flexibility in its shape, while avoiding to be too cumbersome for the numerical estimation.
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In this work, we will follow two choices of distribution that are widely used in the literature:
the mixture of log-normal distributions (MLN) and the generalized Beta of second kind
(GB2) distribution.

3.4.1 Generalized Beta of Second Kind

The GB2 distribution is discussed and implemented in Liu et al. (2007), Jondeau,
Poon and Rockinger (2007) and, in the case of the Brazilian Real, in Abe, Chang and
Tabak (2007) and Santos and Guerra (2015). The main advantage of using this type of
distribution to model the RNDs is that only a few modifications are required in order to
obtain a real-world density function, allowing a great number of applications in the results

obtained.

The GB2 distribution is fully described by four parameters: 6 = (a, b, p, ¢) and its
probability density function has the form:

fap2(K,0) K1 [1 + (—ﬂ , s> 0, (3.12)

. a
ber B (p7 q)

where B(p,q) = T'(p)I'(¢)/T(p + ¢q). The cumulative density function of the GB2 is related

to the density function of the Beta distribution and has the form:

Fom(K,0) = Fs((K,a,0),0),  y(K,a,b) = — L2

- T (3.13)

The martingale condition is imposed in order to guarantee risk neutrality and to

facilitate the optimization of parameters:

bB(p+L,q— 1
g, = 0B 0= 3) (3.14)

B(p.q)

The formulas for the price of European call option prices under the GB2 distribution
are described in Liu et al. (2007) and Jondeau, Poon and Rockinger (2007). However,

given that this work is focused on the estimation of FX risk-neutral densities, the domestic

and foreign interest rates r4 and r¢ have to be incorporated as follows:

C(K,0) = e 700 /K Y (Sp — K)*f(K, 0)dSy

= Fe s (T—¢)

1 1
1_FGBQ (Kvaubyp+_7q__>:| (315)
a a

_ K*Td(Tft)[l —_ FGBQ(K, a/; b7p7 q)]

After a closed-formula for the price of the option is obtained, a vector of parameters

0* = (a*,b*, p*, ¢*) that solve the following minimization problem have to be found:
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Ne

mHin Z(Cemp,i,T - CGBZ(K(Cemp,i,T>7 67 T>)2

i=1

Np
+ Z(Pemp,i.,T - PGBZ(K(Pemp,i,T)a 97 T)>2 . (316)
i=1

Subject to the restriction (3.14). The N, and N, are, respectively, the number of
observable call and put prices with same maturity 7. By minimizing the difference between
the estimated and empirical option prices, the parametric risk-neutral density function

can be described with the parameters 6*.

3.4.2 Mixture of Log-normal Distributions

A very popular choice of parametric distribution to describe the risk-neutral density
function is the mixture of log-normal densities (MLN). It allows for more flexibility in
the estimation, as the number of mixed densities may be freely altered (although the
majority of the literature use a combination of two log-normal densities), and the use of
the log-normal density is a natural candidate as an extension of the original Black-Scholes

model.

For the purposes of this work, we will adopt and describe a mixture of two log-
normals. The PDF of the MLN will be simply the weighted combination of two log-normal

densities:

gMLN(Ka 9) = agLN(K> M1701,T) + (1 - a).gLN(Ka M2702>T) ) (3-17)

with 0 < a < 1, where o distributes the total weight between the two log-normal
distributions, u; are the scale parameters describing each of the ¢ distributions, and o; are

the variance parameters. Conversely, it can be written that:

F; = exp (log(S) + (i — 0.5 X )T + 0.5 x (07 x VT)?), (3.18)
where F; will be the ATM forward related to each log-normal density function, and
(i — 0.5 x 02)T is the mean associated with the log-normal process.

BEach PDF is described as:

1 ( 1 llog(K) — log(F) + 0.502T] 2>'

K, FoT)= ——ex
g ) Kov2rnT P 2 O'\/T)

(3.19)

Conversely, the price of an European call option under mixture of log-normals

framework can be described as a weighted average of two options priced under the original
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equation proposed by Black (1976) (LIU et al., 2007);(JONDEAU; POON; ROCKINGER,
2007):

CMLN(K7F17F2,U1,U27T): 06><C1LN(K,F170'1;T)
+(1 —a) x CFN(K, Fy, 05, T) (3.20)

where C);pn represents the price of an European call under the MLN distribution and

CEN represent the price of each European call under the log-normal distribution.

Similar to the procedure to find the optimal set of parameters under the GB2
distribution, the is to find 6* = (Fy, o7, Fy, 05, a*) such that:

Ne

mgin Z(Oemp,i,T - OJ\/ILN(K(Oemp,i,T)v 07 T))2
i=1
Np
+ Z(Pemp,i,T — Pyin (K (Pemp,it), 0, T))2 (3.21)
i=1
subject to
F=axF+(1—-a)xF2 (3.22)

in order to ensure the martingale condition that mean of the risk-neutral density equals
the ATM forward of the underlying asset.
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4 Methodology

In this chapter, the methodology adopted in the estimation of the risk-neutral

densities and its moments will be described and discussed in details.

4.1 Data treatment and implied volatility smile smoothing

The source of information for this work is the database provided by B3 (Brazilian
stock exchange) between January 2014 and February 2019. In their website, it is possible
to extract the information necessary to calculate the RNDs of the USD/BRL, such as:
spot currency values, foreign and domestic interest rates, options’ reference prices (that is,
option prices published by B3 on a daily basis for a range of strikes and maturities for
mark-to-market purposes), and most importantly, implied volatility structures. An extract
of the options’ reference prices and implied volatility structure per strike published by
B3 on 12 April 2017 is depicted in the Table 1 below. The option strikes are quoted in
USD/BRL future points.

Table 1 — Extract of the implied volatility and reference prices per strike and maturity
published by B3 for USD/BRL European call options.

Maturity  Strike Implied volatility (%) Option price

02/May/2017 2975 12.86 191.13
02/May/2017 3000 12.65 166.57
02/May/2017 3025 12.44 142.34
02/May/2017 3050 12.23 118.67
02/May/2017 3075 12.11 96.07
02/May/2017 3100 12.16 75.32

Regarding the implied volatilities, the B3 follows an elaborate methodology in order
to collect contributions from brokers/dealers and publish final IV estimates for different
products daily. The methodology behind the calculation of implied volatilities for FX will
be described in brief.

First, each broker/dealer listed as contributors is required to provide their particular
set of implied volatilities for different maturities. These are measured in an implied
volatility /option delta space, and the deltas requested to be filled in are currently: 99%,
95%, 90%, 75%, 63%, 50%, 37%, 25%, 10%, 5%, and 1%.

1

The complete methodology adopted to price in options and treat the contributions can be found on
B3’s website: <http://www.b3.com.br/en__us/market-data-and-indices/data-services/market-data/
reports/derivatives-market /methodology /bm-fbovespa-pricing-manual />
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With a set of implied volatility surfaces in hands, B3 assesses whether they respect
arbitrage conditions - that is, if by inputting these implied volatilities in the Black-Scholes

formula:

(i) the prices of the resulting European call options are strictly decreasing as the strikes

increases for a given maturity;
(ii) the prices are strictly increasing as the time-to-expiry increases for a given strike;

(iii) the convexity of the prices with respect to the strike is strictly positive, preventing

that butterfly structures with a positive payout (self-financing) are built.

The implied volatility estimates are also checked for arbitrage opportunities between
participants, and the treated data points are fitted (in the case of USD/BRL, the SVI
parametrization?) in order to produce a consolidated smile that meets the no-arbitrage

conditions between implied volatility points.

Even though the methodology described treats the information in the implied
volatility /option delta space, B3 only publishes implied volatility /option strike smiles. The
transformation performed by B3 from the former to the latter is done according to the

following formula:

K;—Kp
where:

e 0; is the implied volatility for strike K = i;

e 0, is the previous implied volatility measured in the implied volatility/option delta
space (that is, the implied volatility contributed by the dealer/brokers whose strike

is the closest lower to K = i);

e 0, is the next implied volatility measured in the implied volatility /option delta

space;
e K is the strike K = 1;
e K, is the strike equivalent of implied volatility oy;

e [, is the strike equivalent of implied volatility o,,.

2 The stochastic volatility inspired (SVI) models are techniques to fit the market’s implied volatility

smile that guarantee the absence of statistic arbitrage, as developed in Gatheral (2004).



Chapter 4. Methodology 32

It should be highlighted that after this transformation is applied, the implied
volatility smiles are no longer arbitrage-free — that is, self-financing butterflies are observed
in the reference prices published. For the purpose of the estimation of risk-ncutral densities,
these self-financing butterflies translate into negative probabilities when the Breeden-

Litzenberger result (3.4) is applied.

It is not possible to recover the (arbitrage-free) implied volatility /option delta
smiles from the information published without making additional assumptions about
unobserved variables, as the non-linear nature of the delta function often results in missing

information when backtracking equation (4.1).

Nevertheless, irrespective of the existing arbitrage opportunities, the implied volatil-
ity information published by B3 still has the significant advantage of synchronicity, as
it based on end-of-day contributions from market participants. That is, the fact that
contributors are required to provide several complete implied volatility smiles regardless of
deals having occurred at every tenor mitigates the issue that implied volatility estimates
based on actual prices might be non-synchronous and reflect different market conditions -

which is a frequently mentioned issue in the literature.

Given that we believe that the synchronicity feature out-weights the drawbacks
from eventual price arbitrages, rather than relying on a different data source for implied
volatility smiles, we chose to fix arbitrage issues by applying the smoothing interpolation
methodology described in Section 3.2 when treating the implied volatility /option strike

smiles.

4.1.1 Constant maturities

By taking the decision to work with data coming from B3, another aspect of the
Brazilian market has to be considered. Differently from other countries, the Brazilian
onshore products listed on B3 such as interest rate futures and options are traded with
constant expiry dates, rather than constant maturities. That is, instead of trading deriva-
tives with maturities clustered as 3 months, 6 months, and so on, contracts will have fixed

maturities of 02 January 2020, 01 February 2020, and so on.

Given this, the time-to-expiration of every contract will change daily. Given that
the goal of the work is to conduct an analysis of the moments of the RNDs, and that
using constant expiry dates could lead to issues related to the optimal roll-over dates for
such analysis, it was decided to work with constant-maturity tenors. More specifically,
l-month, 2-month and 3-month (21, 42 and 63 business days, respectively) constant
maturity risk-neutral probability density functions were chosen as the end-goals of the
estimation. Given that the liquidity in the Brazilian FX market tends to concentrate in

short-term maturities, we chose not to further extend the analysis into longer-date tenors.
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In order to obtain such constant maturity RNDs, it is necessary conduct an
interpolation of the interest rates and the implied volatility smiles. These interpolations
were conducted via straightforward cubic splines of the DI (domestic interest rate) and
the cupom cambial (foreign interest rate) curves. In the case of the implied volatility
smiles, they were only interpolated for the strikes that were common to the maturities

immediately before and after the number of business days to be interpolated.

For example, when building a 42-business days (2-month) constant maturity implied
volatility smile on 12 April 2017, the closest B3 dates available were 01 June 2017 (33
business days) and 03 July 2017 (54 business days). The common strikes between the
two maturities ranged from 2825 to 3800, and implied volatilities above or below this
interval were discarded. Each point was interpolated using a cubic spline, and a graphical

representation of the result is shown in Figure 4.

——— 01 June 2017 (33 business days)
—— 03 July 2017 (54 business days)
----- 2-month interpolated (42 business days)

[
[}
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Impliedvolatility [% perannum)

2825 3000 3175 3350 3525 3725
Call option strikes

Figure 4 — Interpolation of a 2-month constant volatility smile from fixed-date maturities.

4.1.2 Smoothing spline

After the volatility smiles and interest rates are interpolated for the constant
maturities, a smoothing spline interpolation is applied to the implied volatility smiles. The
goal is to simultaneously generate more implied volatility estimates (in order to apply the
result of Equation (3.4)), correct eventual convexity issues arising from the transformation

discussed in Section 4.1, and reduce the noises in the smile that and may generate ‘kinks

in the probability density function.

As discussed in Chapter 3, there is a trade-off between the informational content
of the estimated RND and its smoothness: if the implied volatility smiles are excessively

smoothed out, the analysis of the density functions might become unreliable simply because
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the "true" RND was shaped into a generic figure. Having this in mind, it was chosen to
start off with a low level of smoothness that can be gradually increased up to a desired

point.

The smoothing spline function applied is shown by Equation (3.5). The weight

parameter w is used to assign relative importance to different points in the curve.

For instance, in Bliss and Panigirtzoglou (2002), the weights adopted are the options’
vegas. For a given set of options, their vegas will be higher when closer to the ATM option
and increasingly lower when closer to deep ITM and OTM options. This weighing structure
aims to mitigate distortions caused by the low liquidity of away-from-the-money options

relative to those closer to ATM.

However, given that the information provided by B3 is built from surveys with
market participants - rather than actual negotiations -, applying a weighting structure
that reduces the importance of away-from-the-money options might lead to loss of relevant

information.

Thus, we opted to use the following structure: w = 100 for the ATM, deepest ITM,
and deepest OTM options; and w = 1 otherwise. With this, it is possible to smooth out
the implied volatility structure while preserving its shape around the point of highest
liquidity (ATM) and at the edges of the implied volatility smile.

As per the smoothing parameter )\, an empirical observation of the shape of
the estimated density functions suggests that an initial setting of A = 1 x 10™* when
interpolating the volatility smile provides a reasonable balance between smoothness and

preservation of the original shape of the curve.

After an initial smoothing interpolation, it is necessary to assess whether eventual
convexity issues in the smile still persist. This is done by converting the implied volatilities
into prices and checking whether self-financing butterfly structures can be built. If so, the
A parameter is recursively increased as: A = A+ 1 x 107°, until the smoothing interpolation

is sufficient to guarantee that the convexity condition is met on all points.

Then, it is trivial to interpolate implied volatility points along the smile for a larger
collection of strikes - in our case, an implied volatility is estimated every 0.001 BRL per
USD or 1 future point. These will be input into the Black-Scholes formula and converted

into European option prices.

In order to illustrate the process, the interpolated smile shown on Figure 4 was
adjusted using the weighing structure described above and considering A = 1 x 1074, The

obtained smile is shown on Figure 5 below.
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Figure 5 — Interpolated and smoothed implied volatility smiles plotted against changes in
estimates due to smoothing (in bps, RHS).

Although the interpolated and smoothed implied volatility smiles appear to be the
same when compared, their differences become much more apparent when the risk-neutral
probability density function is estimated by applying the Breeden-Litzenberger result, as

shown on Figure 6.
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Figure 6 — Risk-neutral probability density functions estimated using the implied volatility
smiles of Figure 5.

From this point onwards, the extraction of the RND will depend on the technique
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adopted.

4.2 Non-parametric estimation of RND with GEV tails

It is possible to extract both the risk-neutral PDF and CDF from the collection of
implied volatilities calculated above. One characteristic of the non-parametric framework
is that the RND will only be estimated up to the last strike with a corresponding implied
volatility in the smile. Given that this approach utilizes the result shown on equation (3.4),
the probability density function will be truncated for strikes that are deep away-from-the-

money.

While it would be simpler to extrapolate the implied volatility, this would be a
very strong assumption about the market’s preferences in these extreme scenarios. Rather,
we fitted the distribution tails according to the GEV distribution, as described in Section
3.3. A few particularities of the database provided by B3 will be discussed as follows.

As it is possible to see from Figure 6, the implied volatility smiles provided by B3
translate into relatively complete risk-neutral density functions. The fact that the bulk of
the RNDs are already determined means that the inclusion of the tails will have a smaller

impact on its final shape and the subsequent calculation of its moments.

In order to find parameters that best fit each GEV tail, four significance levels ay
e ap that are sufficiently close to the edges of the CDF are chosen. They will be serve as
equality restrictions in Equations (3.9) and (3.10) and as inputs of the objective function
of the optimization routine (3.11). An excessive distance between «; and s in each tail
will have a negative impact on the performance of the optimization; therefore, a relative
distance of 3% (that is, asgp = a1g — 3% and @, = ay, + 3%) was adopted. All the
optimizations were conducted on Matlab using the fmincon (constrained optimization)

function.

By choosing the significance levels empirically and enforcing conditions (3.9) and
(3.10) in the maximization, the cumulative density of the tails estimated will necessarily
complement the density of empirical distributions so the combination integrates to one.
That is, if a level of a1z = 98% is chosen, the right GEV tail will have a cumulative density
of 2%. This restriction prevents the optimization from finding parameters that lead to

tails whose density is different from that established by market prices.

The CDF that is equivalent to the smoothed RND depicted in Figure 6 is shown
in Figure 7 below. In this case, the significance levels used were oy, = 2%, agr, = 5%,
arr = 98%, and asr = 95%.
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Figure 7 — Cumulative probability density function and significance levels.

The optimization routine is performed first for the right tail, resulting in the
parameters 0%, = (U5, 0%, 5| that minimize the objective function. Then, the routine for
the left tail is conducted with the additional restriction that £}, < &, < 0. By adopting
this additional restriction in the parameter that determines the behaviour of the GEV
tail, the left tail of the RND will decrease towards zero more rapidly than the right tail.

In the case of the risk-neutral probability density function of USD/BRL, the right
tail is associated with scenarios of a depreciation of the Real against the US Dollar.
Therefore, the inclusion of the additional restriction when optimizing the left tail in
practice will attribute higher importance to tail risks of a rise in USD/BRL - which is well
supported by Emerging Markets currency performance and FX hedging patterns using

options.

After estimating the parameters O = [u},07,&;], both probability density func-
tions can be estimated according to Equation (3.7). The result of the optimizations for

the smile of Figure 6 and the CDF of Figure 7 is shown in Figure 8 below.
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Figure 8 — Empirical RND plotted and GEV probability density functions estimated with
optimal parameters.

The original (truncated) risk-neutral density is connected to the GEV tails at the
significance level where the difference between the original PDF and the GEV PDF is the
smallest. Then, the distribution is re-based so that the area below the RND is equal to

one, creating the complete risk-neutral density function shown on Figure 9.
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Figure 9 — Complete risk-neutral density function with GEV tails.
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4.3 Parametric estimation of RND

The estimation of the RND under a parametric framework revolves around finding
a set of optimal parameters that minimize the squared difference between observable
option prices and the theoretical prices under a given distribution. In our case, we will
focus on the GB2 and MLN distributions, and use the reference prices published by B3 as

the observable option prices that the optimization will take as reference.

In the case of the GB2 distribution, the optimization routine will minimize the
objective function described by Equation (3.16), subject to the martingale restriction
described in Equation (3.14). The risk-neutral probability density function is obtained by
inputting the optimal parameters 0* = (a*, b*, p*, ¢*) into Equation (3.12), which describes
the probability density function of the GB2 distribution. The RND estimated with the

same dataset of its non-parametric equivalent is depicted on Figure 10.
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Figure 10 — Risk-neutral probability density function under the GB2 distribution.

The RND of Figure 10 can be compared to the non-parametric result shown in

Figure 9 and the result is shown on Figure 11.
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Figure 11 — Comparison between the GB2 and non-parametric RNDs.

The estimation of the RND under the MLN distribution is very similar to the
procedure described for the GB2 distribution: the optimization routine will minimize
objective function (3.21) subject to the martingale restriction (3.22). The risk-neutral
probability density function is described by Equation (3.18) using the optimal parameters
0* = (u3, 07, us, o, a*). Differently from the GB2, it is also possible to estimate each

log-normal PDF. Each density function and the combined RND are shown in Figure 12.
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Figure 12 — Risk-neutral probability density function under the MLN distribution.
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The RNDs of Figure 11 can be compared to the final (combined) result shown in

Figure 12, and the result is shown on Figure 13.
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Figure 13 — Comparison between the GB2, non-parametric and MLN RNDs

Each framework can be more properly compared to each other by estimating the

moments of the RNDs.

4.4 Estimating the moments of the RNDs

Given that the non-parametric framework does not rely on a specific function form
for the probability density function, its moments are calculated via numerical integration
on Matlab. The mean p,,, variance aip, skewness S, and kurtosis K, are given by the

following equations:

o = | KJ(K)AK (4.2)
02, = | (K = 2RO (43)
5 = oA~ o SN "
iy = A5 = ) S )R )

(Tup)
One of the advantages of parametric estimations of risk-neutral densities is that

they allow for the direct estimation of its moments through the parameters, without the
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need of using numerical integration. Also, given that the martingale condition was included
as an equality condition in the optimization routines, the mean of the parametric RNDs
necessarily corresponds to the ATM forward, requiring the estimation only of the variance,

skewness and kurtosis of the distributions.

In the case of the GB2 distribution, Jondeau, Poon and Rockinger (2007) note
that, for a given strike X:

wm U'Blp+2qg-1)
E[X"] = B : (4.6)

for n < aq and with B(p,q) =T(p)T'(q)/T(p + q).

As per the MLN estimation, Liu et al. (2007) show the equivalent result:

E[X"] = 0alez™=M5T 1 (1 — §)afez—mmiT (4.7)
where: |

as shown in Bahra (1997). Also, p; and o; are the parameters that characterize each
log-normal distribution, S is the spot USD/BRL rate, T is the time-to-expiry and € is the

weighting parameter for the density mixture.

With this, is is possible to calculate the parametric variance ag, parametric skewness

S, and parametric kurtosis K, by applying the results (4.6) and (4.7) in the following

equations:
1, = E[K], (4.9)

o2 = E[K? — E[K]?, (4.10)

S, = B - 3@?5”02) iy (4.11)

K, — E[K*] — 4(upE[K3]);: 6, ELL7]) = 3() (4.12)

The process of extraction of the RND can be summarized as the following steps:

1. Download from B3 the information that will be necessary to conduct the estimation
of the RND for a given day: spot USD/BRL, local and foreign interest rate curve

settlements (for all maturities), and implied volatility /option strike smiles®.

3 The daily information from January 2014 to February 2019 was downloaded directly from B3’s FTP

server using a script written in R language. The files come in a .txt file that took around 10 seconds/day
to download.
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steps:

. Interpolate the interest rate curves and the implied volatility smiles in order to

obtain 1-month, 2-month and 3-month constant maturity implied volatility smiles.

. Apply the smoothing spline in order to correct for eventual convexity issues (that is,

self-financing butterflies) and to smooth out excessively noisy parts of the risk-neutral

probability density function.

. Use this interpolation structure to evaluate the implied volatility smile in a more

granular grid of strikes, thus obtaining a much more complete set of observations

within the smile.

. Apply the standard Black-Scholes formula using the interpolated implied volatilities,

interpolated interest rates and other parameters in order to obtain a collection of

options prices (expressed as BRL per option).

Now, the non-parametric estimation of the RND can be summarized as the following

. Estimate the risk-neutral PDF and CDF by applying the Breeden-Litzenberger result

in collection of prices. Unless the implied volatility smile is extraordinarily complete,

this estimation will lead to a truncated empirical RND (missing the tails).

Chose two significance levels for each of the left and right tails that are available
in the empirical CDF. Assess the equivalent strikes and probabilities in the PDF
associated with these significance levels. They will serve as 'connecting points’ to
the GEV tails.

. Run an optimization routine for the right tail in order to find the three parameters

for the GEV distribution that minimize the squared difference between the estimated
RND’s PDF and CDF in the two significance levels.

. Run the same optimization routine for the left tail, adding the additional restriction

that the £ parameter has to be higher than the one of the right tail.

. With the set of parameters that optimize the functions for both tails, estimate the

PDF values for a larger set of strikes.

. Determine which among the two significance levels has the lowest absolute difference

between the truncated RND and the GEV tail — this will be the cut-off point
between the two curves. Use the GEV distribution before/after these points, creating

a complete distribution.

Re-weight the collection of points so that the area below the PDF is equal to one.
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8. Estimate the mean, variance, skewness and kurtosis of the RNDs through numerical

integration.

9. In order to improve the stability of the RNDs estimated, use the optimal parameters

of optimization at time t as the initial guess of the optimization routine at time ¢t + 1.

Finally, the process for the parametric estimation of the RND is summarized as

the following steps:

1. With a collection of observed prices in hands, run an optimization routine in order to
find the parameters that simultaneously: (a) minimize the squared difference between
empirical prices and theoretical prices under the GB2/MLN distribution; (b) meet
the martingale condition that the mean of the RND is equal to the at-the-money

forward.

2. Estimate the mean, variance, skewness and kurtosis of the RNDs by using the specific

analytic formulas of each distribution.

3. In order to improve the stability of the RNDs estimated, use the optimal parameters

of optimization at time ¢ as the initial guess of the optimization routine at time ¢+ 1.

The results of the estimation of the moments will be discussed in depth in Chapter



5 Results and trading with the moments of

the RND

The goal of this chapter is to discuss the results of the estimation of the moments
of the RNDs estimated using the methodology described in Chapter 4 and to provide a

practical application for the moments.

5.1 Analysing the estimated moments of the RNDs

The procedures described in Section 4.4 were applied to daily data of USD/BRL
market between January 2014 and February 2019, for a total of 1,264 business days. The
Table 2 below summarize the median variance, skewness and kurtosis for 1-month, 2-month
and 3-month constant maturities of the non-parametric risk-neutral density (the means of
the RNDs are not depicted given that the martingale equality restriction included in the

optimization routines required it to be equal to the ATM forward).

Table 2 — Median of the descriptive statistics for the non-parametric RND.

Statistic 2015 2016 2017 2018 2019

Variance (1-month) 34,978 34,341 14,648 26,633 24,769
Variance (2-months) 69,000 72,166 33,077 59,658 48,825
Variance (3-months) 108,555 106,713 53,740 94,044 71,595
Skewness (1-month) 0.75 0.71 0.95 0.87 0.96
Skewness (2-months)  0.98 0.94 1.23 1.07 1.02
Skewness (3-months)  1.18 1.11 1.39 1.21 0.96
Kurtosis (1-month) 4.47 4.36 5.05 4.93 5.35
Kurtosis (2-months) 5.35 5.18 6.30 5.85 5.90
Kurtosis (3-months) 6.19 5.86 7.10 6.22 5.50

The scale of the variance is related to the fact that B3 publishes the strikes of
USD/BRL options in terms of future points (i.e., a strike of USD/BRL at 4.00 is depicted
as 4,000). In terms of the data, it is possible to see that there is an increase in variance,
skewness and kurtosis when the time-to-expiry increases - reflecting higher uncertainty
(expressed by the increase in variance and kurtosis) but also a higher perceived risk of a
rise in USD/BRL (expressed by the increase in skewness). The increase in variance across
all estimates also shows that there is a stochastic process that prevents the existence
of calendar spreads. The only exception is the skewness in 2019, where the coefficients

remained about constant for all maturities.
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The Tables 3 and 4 below show the equivalent descriptive statistics for the GB2
and MLN frameworks.

Table 3 — Median of the descriptive statistics for the GB2 RND.

Statistic 2015 2016 2017 2018 2019

Variance (1-month) 33,067 31,806 14,362 26,508 22,832
Variance (2-months) 68,734 66,168 31,733 57,535 47,439
Variance (3-months) 100,433 100,710 50,695 87,911 73,509
Skewness (1-month) 0.74 0.79 1.01 0.90 0.80
Skewness (2-months)  1.02 0.97 1.15 1.11 0.96
Skewness (3-months) 1.28 1.18 1.34 1.32 1.16
Kurtosis (-month) ~ 4.81 490 599 559  4.98
Kurtosis (2-months) 5.72 5.40 6.34 6.12 5.43
Kurtosis (3-months) 6.94 6.28 7.26 7.09 6.13

Table 4 — Median of the descriptive statistics for the MLN RND.

Statistic 2015 2016 2017 2018 2019

Variance (1-month) 40,681 41,744 26,659 40,225 37,272
Variance (2-months) 79,550 77,843 49,178 76,260 68,530
Variance (3-months) 119,302 117,009 78,517 123,227 109,595
Skewness (1-month) 0.51 0.53 0.60 0.60 0.54
Skewness (2-months)  0.73 0.72 0.73 0.76 0.70
Skewness (3-months)  0.94 0.91 0.91 0.98 0.90
Kurtosis (1-month) 3.36 3.39 3.61 3.61 3.51
Kurtosis (2-months) 3.91 3.90 4.05 4.08 4.02
Kurtosis (3-months) 4.54 4.53 4.71 4.82 4.62

The GB2 estimation of the RND yielded very similar descriptive statistics to
those observed for the non-parametric estimation: the variance and skewness coefficients
stood around the same levels for all periods. However, the RND estimated with the GB2
distribution showed a higher level of kurtosis for the period of 2015-2018 relative to the

non-parametric framework.

Regarding the MLN estimation, the level of variance stood higher than the other
two frameworks for all periods and maturities analysed, while the skewness and kurtosis
were lower than the non-parametric and GB2 estimations. The estimated 1-month MLN
and GB2 kurtosis for the period of 2015-2017 is shown in Figure 14.
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Figure 14 — Comparison between the estimated 1-month kurtosis coefficients under the
MLN and GB2 frameworks.

Even though some of the estimated moments appear to be similar for the non-
parametric and GB2 distribution, the stability of the estimations will be very different.
Figure 15 shows the daily skewness estimates extracted from the 2-month RNDs under

GB2 and non-parametric framework.
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Figure 15 — Comparison between the estimated 2-month skewness coefficients under the
non-parametric and GB2 frameworks.

Even though the overall pattern and median values across the period analysed
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appear to be similar, the moments of the risk-neutral density function estimated using a
non-parametric framework are much more volatile and unstable than those estimated using
a parametric approach. This conclusion can be extended to all the moments estimated

and also when compared to the MLN framework.

This very important characteristic of the non-parametric framework has to be taken
into consideration when choosing an approach to extract a risk-neutral density function.
Should the application of the RND depend on the stability of the estimation - which is the
case of the present work, as will be discussed later in this Chapter - the non-parametric

framework may yield sub-optimal results when compared to parametric approaches.

5.2 Motivation of the application

The applications of an asset’s risk-neutral density functions mentioned in the
literature are numerous, ranging from better pricing of exotic derivatives to assessing the
market’s complete distribution of probabilities and applying that to policy making and/or

investment decisions.

In the case of this study in particular, the goal is to assess whether the RND of
USD/BRL can offer valuable information in order to make investment decisions for trading
spot USD/BRL. The rationale behind this implementation will be broken down as follows.

The options market allows for market participants to express their views regarding
an underlying asset’s future performance - views that are reflected in the risk-neutral
probability density function. It is reasonable to assume that information shocks that
alter the asset’s fundamentals will also affect (to different extents) the market’s future

expectations about that asset and therefore its risk-neutral densities.

The spot FX market and its options are interconnected many ways. Besides the
relationship established by the asset’s fundamentals and market’s expectations mentioned
above, there are more technical reasons as well. Given that some option positions and
portfolios require some sort of interaction with the FX market (like delta hedging, for
instance), part of the volume traded in the spot FX is due to investors and/or market

dealers conducting this kind of operation.

At the same time, the impact of the options market in its underlying FX market
cannot be exaggerated: it would be naive to assume that risk-neutral densities provide a
roadmap to the future of the underlying asset, or that a currency’s performance is solely
driven by the behavior of its options (a case of ‘the tail wagging the dog’). The hypothesis
of this work’s application does not rely on such overstatement, but rather builds on the
fundamental relationship between the risk-neutral density functions and its underlying

asset.



Chapter 5. Results and trading with the moments of the RND 49

Part of the changes in a currency value are not purely explained by changes in its
fundamentals, but are also consequence of aspects such as liquidity shifts, large investors’
activity ‘dragging’ the market, or even due to intricate reasons more related to behavioral
finance. If we assume that the majority of shocks of this type tend to be temporary and
subside with time as the market retraces towards its fundamental value, the risk-neutral
density may serve as a guide or a compass to detect if such type of market deviation is

taking place.

In other words, given that the impact of an information shock in the fundamentals
of a certain asset should be reflected both at present value (in our case, the spot FX) and
in its expectations (the RND), the risk-neutral density may be used to detect ‘unexplained’
market deviations in spot USD/BRL that have a higher likelihood of being faded out
in the short-term. If this hypothesis is correct, the appropriate detection of this type
of behaviour prior the subsequent convergence towards fundamentals would generate a

trading opportunity.

Building on this hypothesis, the goal is to propose a model that can successfully

identify when such type of pattern occurs, and trade the spot USD/BRL using the signals.

The solution proposed in this work does not intent to be ‘ultimate” FX trading
tool or the best way to make use of the information contained in the RNDs. Rather, it
aims to be a comprehensive and straightforward way to test whether the informational

content of the RNDs can be used to improve the decision taking for trading.

5.3 The model

In what follows we are going to use the following notation:

e closing spot rate level, BRL per USD, on date ¢: .5},

e percent return between closing levels at dates ¢t and ¢t — 1:

— St _
St

Rt 17

e cstimated moment' on date ¢: M,.

We are going to prescribe the following model:
Ry = By My + B My + &4, (5.1)

where ¢ is considered to be Gaussian with zero mean. The regression is computed on a

daily basis on a 42 business days (2 months) rolling window. A smaller time window is

I This moment can be variance, skewness or kurtosis, estimated under non-parametric, GB2 or MLN

frameworks.
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preferred, as adding too much data points would incur the risk of mixing different market

regimes, reducing the effectiveness of the estimation.

The model (5.1) was created as a way to establish a linear relationship between
the distributions’ moments and the returns of USD/BRL, as new information shocks are
incorporated both in the spot market and in the RND. The 5 parameters accommodate
the inter-temporal differences in these informational shocks. If the theoretical motivation
of the exercise is correct, the unexplained returns (related to ‘non-fundamental’ activity)
can be measured in a straightforward manner, also taking into account the mean-reverting

nature of markets and the RND moments.

The means of the RNDs were not included among the moments studied given that
the martingale condition was enforced as an equality restriction during the optimization
routines. The fact that it will necessarily match the ATM forward at all times thus provide

no information content to measure the type of activity that is the goal of the present work.

With the estimation of R, in hands, it is possible to retrieve what would be the

modelled level of the spot rate at date t:

gt = (1 + Rt) X St—l . (52)

It is also possible to create ‘confidence bands’ with the model’s MSE (mean squared

error):

Upper band:

UB; = a x \/MSE, + S,
LB; = a x \/MSE; — S,

where the o parameter allows for flexibility in the width of the bands.

Lower band:

The actual levels of USD/BRL is then compared against the model’s central
estimate and its bands. Given that all the information published by B3 to estimate the
RNDs only becomes available after the domestic F X market is closed, any trading signals
produced by the model at time ¢ can only be put in place at time ¢ 4+ 1. The trading rule

can be summarized as follows:

1. When all the information regarding the trading session ¢ is available, estimate the
RND, its moments and the USD/BRL return at time ¢, and input into Equation
(5.1). The RND and its moments at time ¢ — 1 will already be available.

2. Check whether the parameters of the model are statistically significant: any model

signals will only be translated into actual positions if the 5; and By in Equation
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(5.1) are statistically significant (at least) at 10%. This particular significance level
was chosen as it is simultaneously a well-established threshold in the literature, and
allows for greater flexibility in the regression. If the coefficients are not statistically
significant, any signal will be ignored. This aims to reduce noises from signals that

have a low informational content.

3. If the regression coefficients are statistically significant, the closing level of USD/BRL
at t is compared with the model’s upper and lower band. If it is above the upper
band or below the lower band, a trading signal is triggered. The positions are built
according to the hypothesis that a signal represent a currency’s dislocation from

fundamentals and that a convergence is likely:

e (a) if USD/BRL has breached the upper band, the model sells USD (buys
BRL);

e (b) if USD/BRL has breached the lower band, the model buys USD (sells BRL).

4. Based on the signal triggered at ¢, a position is built at the beginning of the trading
session of t + 1 - more specifically, at 9:15 AM (15 minutes after the domestic market
opens). This was chosen in order to allow for market’s opening liquidity and volatility
to settle (avoiding to use open prices that might be infeasible to build a position in
practice). A bid/offer spread of 2 future points (0.002 USD/BRL) was considered as

trading cost for each position to be opened and closed.

5. The extraction of the RNDs and updated model estimates/bands is performed daily.
Assuming that a position is opened at t + 1 (from a signal triggered at t), it will be

closed if:

e (a) the USD/BRL retraces back inside the bands at ¢ + 1, +2,¢ + 3...;

e (b) the coefficients estimated in the Equation (5.1) are no longer statistically
significant at ¢t + 1,t +2,¢ + 3. ...

6. Following the previous example where a position is opened at ¢ + 1 (market opening)
and assuming that due to reasons (a) or (b) mentioned above there is no longer
a trading signal at ¢ + 1 (after market, when information is released by B3), the
position is closed at 9:15 AM of the trading session of the following day (in this case,
t42).

7. The performance of the strategy considered in this particular trade would be the
trade level of the position at ¢ 4+ 2 against the trade level of the position at ¢ + 1,

minus trading costs.

The trading rule was applied to the RND moments estimated between January
2014 and February 2019 (a total of 1,264 trading days). The « levels used to build the
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confidence bands of the model were 0.2, 0.4, 0.6, 0.8 and 1.0. Finally, these confidence
bands were applied to the moments estimated for the 3 time horizons estimated (1-month,
2-month, and 3-month constant maturity), resulting in a total of 135 strategies (9 moments

using 5 different confidence bands applied for 3 different maturities).

The strategies were ranked and compared according to the following metrics:

e Total return: the total cumulative return of the strategy during the complete period

of analysis;

e ‘Signal consistency’: the number of years with positive cumulative returns when the

trading rule is applied;

e Gain/loss ratio: ratio between the median return of trades with positive return
and the median return of trades with negative return. This was preferred over the

‘hit-ratio” metric, as this ratio accounts for the sizes of gains and losses.

As a graphical example, the Figure 16 below shows the model’s central estimate
and confidence bands against the actual level of USD/BRL for the year of 2018 using the
2-month constant GB2 skewness and a = 0.6. The shaded areas indicate periods where the
trading signals were triggered. It is possible to see that the trading windows vary (from

daily trades to longer periods).
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Figure 16 — Spot USD/BRL plotted against the model built using the GB2 skewness and
confidence band of a = 0.6 for the period of 2018.

The Figure 17 shows the model’s result using the 3-month constant non-parametric

variance and a = 0.2 for a period between 2015 and 2016. It is possible to see that, as a
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consequence of the smaller value of « relative to the previous example, the model bands

are narrower thus leading to an increase in the number of trading signals.
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Figure 17 — Spot USD/BRL plotted against the model built using the non-parametric
variance and confidence band of a = 0.2 for the period of 2015-2016.

The Table 5 below breaks down the three best performing strategies under each of

the three time horizon and also depicts the performance of the buy-and-hold strategy.
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The cumulative performance of the strategies depicted in Figures 16 and 17 is
shown in Figure 18. It is possible to see that the strategy based on the 2-month GB2

skewness generated a better and steadier performance with respect to the non-parametric

one.
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Figure 18 — Spot USD/BRL plotted against the cumulative performance of the two trading
strategies shown in Figures 16 and 17.

The return of the buy-and-hold strategy was measured by comparing the closing
price of the 1-year USD/BRL onshore future in the first trading session of the respective
year against the closing price of the same future at the last trading session of that year. This
was considered in order to account for the carry of the position. As per the trading strategies
adopted, the carry was accounted by accruing the onshore local currency and USD interest
rates throughout the period where the position remained open and incorporating that

result into the overall gain/loss of the position.

In terms of the results, all the best performing strategies for the three maturities
analysed outperformed the buy-and-hold strategy by a large margin in terms of total
returns. Looking among the components, the strategies that used the moments extracted
from the 2-month (42 business days) constant RND exhibited the best performance among
the three maturities, with the highest average return. In contrast, the strategies using the
1-month (21 business days) RND moments had the lowest average return - which might
indicate that the shortest maturity RND has a lower informational content, at least for
the purpose of applying the risk-neutral density function for trading. This observation

could also be related to the lower vegas of short-term options.

When comparing the different frameworks, the moments extracted from the GB2
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distribution appear to yield the best results, as shown by its predominance among the
best performing strategies depicted on Table 5. The non-parametric framework shows the
worst performance among the three that were tested, when all nine moments and five
confidence bands are taken into consideration. This is likely related to the fact that its
moments are much more volatile than those of the parametric approaches, which could
lead to an increase in false signals and/or positions that are prematurely closed. Given
this, the parametric approaches to extracting the RND that were tested provide better
final results and should be preferred if the end-goal of the application is trading under a

similar framework to what was described in this chapter.

Finally, the use of the variances of the risk-neutral densities provide the highest
returns among the moments calculated. This is true for all the maturities analysed. The
skewness of the parametric frameworks (GB2 and MLN) also gencrated results that

outperformed the buy-and-hold strategy.

It should be noted, however, that the predominance of the strategies that use the
variance of the RND is related to the criteria chosen to rank the strategies. If the hit-ratio
is chosen as one of the criteria, as opposed to the gain/loss ratio, the best performing
strategies become predominantly those who use the skewness of the distributions - with a

lower average cumulative return.



6 Conclusions

The goal of this work was to present a non-parametric technique for the estimation
of the risk-neutral probability density function of the USD/BRL, compare it to other
parametric frameworks that are frequently mentioned in the literature, and propose a

trading application based on the moments of the RND.

A non-parametric estimation has the main advantage of not assuming any particular
shape for the RND. While this is compelling, the estimated density function will also
depend on the extent of the information available for that asset (in particular, the implied
volatility smile) - that is, unless an extraordinarily complete set of option prices for a given
asset is available, an additional assumption regarding the tails of the distribution has to
be made. This work presented a methodology to complete the non-parametric RND using

tails drawn from a GEV distribution.

The parametric techniques to extracting the risk-neutral density function aim to
find a sufficiently flexible function (or combination of functions) to describe a distribution
of asset prices in the future. Although the assumption that the market’s distribution of
outcomes for a given asset follows a known density function is less compelling than the
underlying assumption of the non-parametric approach, the parametric framework yields a
more ‘well behaved’ function that can be used in several different applications. This work
applied the methodology of the GB2 and MLN densities, in order to draw a comparison

with the non-parametric framework.

The non-parametric framework’s feature of allowing its shape to be determined by
market prices is also reflected on the stability of the RND, as it is more prone to have its
shape altered by daily changes in prices. As a consequence, the non-parametric risk-neutral
densities for a given asset will change more abruptly from one day to another. On the
other hand, the parametric risk-neutral densities are less likely to incorporate the changes
in prices, as the optimization routines required for retrieving the parameters do not require
all option prices to match those observed in the market. This conclusion is supported by
the analysis of the moments of the risk-neutral densities under different frameworks, which
show that even though they show similarities in magnitude and direction, the moments of
the non-parametric RND are much more volatile and unstable. The contribution of this
work was to apply a non-parametric technique to estimate the RND of USD/BRL options

and to compare the moments of the distributions under different frameworks.

Secondly, the chosen application was to test whether the USD/BRL risk-neutral
densities’ informational could improve the decision taking when trading the currency.

The fundamental hypothesis of the application was: information shocks that affect the
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fundamentals of an asset are reflected (to different extents) in both spot, futures and
options - and by consequence in its risk-neutral probability density function. However, the
opposite is not necessarily always true, that is, not all shifts in asset prices are purely due
to changes in fundamentals. Rather, they could also happen due to liquidity and other

‘behavioural’ reasons.

We assumed that these ‘non-fundamental’ shocks tend to have only a short-term
impact, fading away with time. Then, we test whether the RNDs can be used to detect
when this type of shock is taking place in spot/futures, and build trades that profit of the
convergence towards its fundamental value. This was done by modelling the USD/BRL

returns as a function of the moments of the estimated risk-neutral densities.

We were able to build simple strategies that outperformed the buy-and-hold strategy
during the period analysed (2014-2019). The parametric frameworks (in particular, the
GB2) had, on average, a higher total return than the non-parametric one. This is likely
related to the instability of the non-parametric moments, which could lead to false signals
and sub-optimal timing to open/close positions. In this sense, the contribution of this
work is to provide evidence that the informational content of the moments of the RND

can be used to improve trading performance of USD/BRL itself.

For the purpose of trading based on the model described in this work, the greater
stability of parametric approaches more than compensated the drawbacks from assuming
a particular functional form for the density function. In this sense, the RNDs estimated
using the GB2 framework appeared to strike a balance between a fairly similar shape to
their non-parametric equivalents, and a stability similar to the MLN; indeed, the GB2

approach showed the best performance among all frameworks tested.

Extensions of this work could include: improvements in the trading model such as
optimization of the trading bands and inclusion of stop losses; development of alternative
trading frameworks, including options trading; studies that apply the non-parametric frame-
work to pricing and interval forecasting; extraction of RND from fixed-date information
provided by B3.
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