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Abstract

We contribute to an emerging literature that shows that machine learning algorithms can discern

between stock mutual funds that will outperform and underperform. In addition, we present

evidence from the Brazilian equity mutual fund industry that using XGBoost, funds with the

highest predicted abnormal returns outperformed funds with the lowest predicted abnormal

returns by almost three times, while being less risky. Furthermore, we showed that CVaR is

the most important feature for prediction and that return-based metrics greatly outperform

characteristic-based ones. Moreover, we demonstrate that weighting methods that consider the

predictions made by the model improve the strategy alpha by a significant amount. Finally, we

also tested nine different ML algorithms and four classic methods. Our results provide evidence

for the superiority of ML models. In specific, Light Gradient Boosting and Extra Trees were the

best algorithms.
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Resumo

Contribuímos para uma literatura emergente que mostra que os algoritmos de aprendizagem

de máquinas podem discernir entre fundos de ações que terão um desempenho superior e um

desempenho inferior. Além disso, apresentamos provas para a indústria brasileira de fundos de

ações que, utilizando XGBoost, os fundos com o maior retorno anormal previsto superam os

fundos com o menor rendimento anormal previsto em quase três vezes, ao mesmo tempo que são

menos arriscados. Além disso, mostramos que o CVaR é a característica mais importante para a

previsão e que as métricas baseadas no retorno superam em muito as baseadas nas características.

Além disso, demonstramos que os métodos de ponderação que consideram as previsões feitas

pelo modelo melhoram significativamente o alfa da estratégia. Finalmente, testamos também

nove algoritmos de ML e quatro métodos clássicos. Os nossos resultados fornecem provas da

superioridade dos modelos de ML. Em particular, o Light Gradient Boosting e o Extra Trees

foram os melhores algoritmos.

Keywords: Desempenho de Fundos de Ação, XGBoost, Aprendizado de Máquina
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1 Introduction

According to a report from the Brazilian Association of Financial and Capital Market

Institutions ANBIMA (2022), combined, all the Brazilian investment funds had close to US$

1.4 trillion in assets under management. From this total, about 6.5% are allocated to the 4000

existing equity mutual funds. Even though it is a small proportion of the whole industry, equity

mutual funds attract the interest of investors who want to diversify their portfolios and have

financial exposure to the stock market.

When an investor decides to buy a share of an equity mutual fund, he wishes to select the

fund (or group of funds) that will deliver the higher return with the lowest possible risk. John

Bogle, founder, and CEO of The Vanguard Group, in a 1992 paper Bogle (1992), wrote that,

when selecting equity mutual funds, it is virtually impossible to pick the winners in advance. He

also wrote that ”if (and I underscore the ”if") there is a systematic way to identify equity fund

winners [...] it would surely be in this new era of the microcomputer". Thirty years after this

statement, an emerging financial literature uses the recent developments in Machine Learning,

Artificial Intelligence, and computational power to predict which equity mutual funds will deliver

the best and worst performances in the future.

In a seminal paper, Wu et al. (2021) apply different machine learning algorithms to the

problem of selecting future hedge fund winners. Using only features based on the fund’s past

return, they show that, in most cases, these models significantly outperform the four-styled

Hedge Fund Research Indices. In addition, they present evidence that neural networks are the

top-performing algorithms and that kurtosis is the variable that has the greatest predictive power

over the fund’s future return.

In addition, DeMiguel et al. (2021) note that machine learning algorithms deliver an

edge for predicting a mutual fund’s five-factor alpha Fama e French (2015) because they allow

for nonlinearities and interactions between the variables of interest. Moreover, they show that

decision-tree methods (gradient boosting and random forests) deliver higher alphas when com-

pared to linear methods (elastic net and OLS). Finally, they suggest that an approach that uses a

single or just a few fund characteristics tends to be dominated by approaches that use multiple of

them.
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In contrast, using a feedforward neural network, Kaniel et al. (2022) show that fund

momentum and flow are the only variables needed to differentiate funds with higher future Cahart

abnormal returns (CARHART, 1997) from those with lower ones. Consequentially, the authors

reveal that the characteristics of the stocks that funds hold, conditioned on fund momentum

and fund flow, are not useful metrics to tell good and bad equity mutual fund managers apart.

Furthermore, they show that these two metrics have much greater predictive power when investor

sentiment is high. As they point out, linear models cannot grasp this kind of relationship.

In consonance with these previous works, Li e Rossi (2020) present evidence that

indicates that boosted regression trees significantly outperform traditional linear methods. To

support this claim, they construct long-short portfolios that buy (sell) the top 10% funds with the

highest (lowest) predicted future performance. This strategy delivers an annual excess return of

6.68% and an even bigger risk-adjusted return of 7.46%, both statistically significant at the 1%

level. The authors also find that out of the ten characteristics with the highest predictive power,

seven are related to trading frictions and three to momentum.

These works are part of a bigger trend of applying machine learning to uncover different

relationship structures between financial variables. Goodell et al. (2021) present an extensive

review of the theme. As they point out, there are three main thematic structures of Artificial

Intelligence (AI) and Machine Learning (ML) research in finance. Our paper is in the portfolio

construction, valuation, and investor behavior category. The other two categories refer first to

financial fraud and distress and then to sentiment inference, forecasting, and planning.

In this paper, as in previous works, we will focus our attention on trying to discern, in

advance, equity fund managers that will outperform from those that will underperform. For

that, we use a conventional stepwise chronological data split. This means that for every month

between 2008-01-01 and 2021-12-31, we will train our XGBoost model (CHEN; GUESTRIN,

2016) on the data available until that month and then we will make predictions for the upcoming

month. After that, we will rank the funds based on the predictions and create portfolios that go

long (short) in the funds with the highest (lowest) predictions.

That explained, we need to justify why we are choosing XGBoost as our principal model

over other Machine Learning Algorithms and what is our dependent variable - the metric that will

define what is under and outperformace. First, we use XGBoost because it is computationally

efficient (CHEN; GUESTRIN, 2016) and has been successfully used in various domains and ML
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problems. Fauzan e Murfi (2018), for example, show that XGBoost gives better results than other

methods like AdaBoost, Random Forest, and Neural Networks for insurance claim prediction.

In addition, Giannakas et al. (2021) show that XGBoost performs better than a Deep Neural

Network (DNN) with four hidden layers when predicting teams’ performance. Finally, Zhang

et al. (2020) shows that XGBoost outperforms Support Vector Machine, Random Forest, and

Logistic Regression for transaction fraud detection. Even though we have a strong argument for

using the XGBoost algorithm, we will also present the main result for other ML algorithms.

Second, the metric that will be used to define which funds underperformed and which

outperformed is the Carhart four-factor abnormal return, as in Kaniel et al. (2022). This metric is

the difference between the funds’ realized return in month t and its expected return at the same

time. The expected return is the inner product of the vector containing the factors’ returns at

month t and the vector containing the funds’ exposure to each factor. The factor exposures are

obtained from the regression of the funds returns in excess of the risk-free rate against the Cahart

four factors (market, size, value, momentum) from t −1 to t −12.

Based upon the extensive literature regarding financial metrics that have predictive

power over funds’ future returns, we present our explanatory variables. Initially, we divide the

independent variables into return-based and characteristics-based metrics. We selected eleven

metrics for the first group: Carhart (1997) t-stat intercept and betas, CVaR, Modified Information

Ratio (ISRAELSEN et al., 2005), Tracking Error, Kurtosis, R2, Idiosyncratic Volatility. We

applied them to three periods based on momentum literature (short-term reversal, short-term

momentum, and momentum).

Furthermore, there are eleven variables in the characteristic-based group. These variables

are AUM, three flow-related, number of shareholders, age, redemption notice periods, and

dummies indicating if the fund is open - accepts inflows -, if it can take on leverage, if it is a

Fund-of-Funds (FoF), and if it is an exclusive one - only one shareholder. In total, the are 44

independent variables.

The rest of the article is structured as follows: (i) first, we revise the literature about

metrics with explanatory power over funds returns; (ii) next, we present the data and the

explanatory variables that will be considered; (iii) after that, we present the basic idea of how

XGBoost and the other ML models work; (iv) next, we show the results; (v) finally, we conclude

and make remarks about possible future developments.
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2 Literature Revision

The investment fund industry plays an important role in the global financial market,

as it represents a modality of collective investments that has been showing significant growth

throughout the world over the years. Some of the reasons for that include the fact that they

provide liquidity, diversification, and professional management at low costs Chua e Tam (2020).

The choices made by the manager in the selection and assembly of the portfolio will

be decisive for the subsequent performance of the fund. From an investor’s point of view, in

general, to evaluate the performance of mutual funds, past performance, the Sharpe measure, the

Treynor measure or the Jensen measure are used. However, interest in using machine learning

techniques to assess fund performance appears to be a promising option, as past performance,

fund characteristics, fund dynamics and fund flow may be the most important predictors of future

fund performance (DEMIGUEL et al., 2021; KANIEL et al., 2022).

Although the literature on ML and AI applications in finance is relatively new, there is a

well-developed literature that finds metrics that have predictive power over the future returns of

mutual funds and hedge funds. Thus, financial econometrics has been widely used in empirical

research in financial and economic studies (LEE, 2021).

At the same time, with the development of modeling techniques, new propositions about

the coherence of risk measures used by fund managers emerge (ARTZNER et al., 1999), making

the discussion on asset allocation in constant evolution. Liang e Park (2007), for example,

presents evidence that risk measures such as Expected Shortfall (CVaR) and Tail Risk explain

the cross-section of hedge fund realized returns, while semi-deviation and Value at Risk do not,

calling into question the traditional assessment measures.

In line with that, there is an extensive literature that establishes a relationship between

mutual funds’ past performance and future performance. Hendricks, Patel e Zeckhauser (1993),

Brown e Goetzmann (1995), Carhart (1997), for example, find that funds with lowest returns

tend to underperform in the following months. Also, Carhart (1997) shows that the performance

of past mutual fund winners tend to reverse after one year. In addition, Harvey e Liu (2018) states

that past fund performance has low predictive power over future returns because it is too noisy.

However, they show that, using a random effects framework, they can improve alpha forecasts.
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Furthermore, still exploring the relationship between past performance and future returns,

Vidal-García et al. (2019), using UK equity mutual fund data, show that there is a negative

relationship between idiosyncratic risk and returns. Kacperczyk, Sialm e Zheng (2005) also

present evidence that more concentrated funds outperform, which may indicate that tracking

error may be a relevant feature for mutual fund return prediction.

In parallel, there is also a relevant literature that uses fund holding characteristics to

predict future returns. Cremers e Petajisto (2009), for example, introduce Active Share and

show that this new metric predicts fund performance. Moreover, a metric that captures the

impact of unobserved trading, return gap, also has predictive power over funds future returns

(KACPERCZYK; SIALM; ZHENG, 2008). Finally, other metrics such as active weights (DOSHI;

ELKAMHI; SIMUTIN, 2015), and risk shifting (HUANG; SIALM; ZHANG, 2011), have been

shown to be able to separate good and bad equity mutual fund managers.

Added to that, Titman e Tiu (2011) show, for the hedge fund industry, that funds with

lower R2 with respect to systematic factors tend to have higher alphas and a superior risk-return

relationship. In consonance, for the mutual fund industry, Amihud e Goyenko (2013) present

evidence that a portfolio that goes long (short) funds with lower (higher) R2 produce a statistically

significant alpha of 3.8%.

In a moral hazard paradigm, Wu et al. (2021), based on Goetzmann, Jr e Ross (2003),

reason that a fund manager may increase the fund’s risk level if it falls under the high-water

mark. For them, this means that the fund’s current drawdown may be a good proxy for the risk

of a fund manager’s moral hazard. They also show that kurtosis is the most important variable

when making predictions about a fund’s future returns.

Additionally, Aragon (2007) show that there is a positive, concave relationship between

hedge fund returns and share restrictions, such as lockup period restrictions, redemption notice

periods, and minimum investment amounts. They hypothesize that this may be because funds

with longer lockup periods can handle illiquid assets more efficiently, being able to capture a

liquidity premium. These findings are corroborated by Agarwal, Daniel e Naik (2009).

Plus, Chen et al. (2004), Yan (2008) show that a negative relationship between return and

fund size (AUM) exists. Both of them connect this phenomenon to liquidity. In contrast, Adams,

Hayunga e Mansi (2018) present evidence that outliers are responsible for the existence of this

relationship. Furthermore, examining the data manually, they track these extreme observations
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to bad data and show that removing them makes the relationship between fund size and return

economically and statistically insignificant. In consonance, Pástor, Stambaugh e Taylor (2015)

note that, after correcting econometric biases, there is an insignificant relationship between the

variables. However, they present evidence of decreasing returns to scale at the industry level.

In addition, GRUBER (1996), Zheng (1999) present evidence of the smart money effect:

fund investors can discern between skilled and nonskilled equity mutual fund managers and

are able to allocate resources to these good funds that will, subsequently, receive more inflows

and tend to outperform in the future. Also, Zheng (1999) points out that the effect is short-

lived. In contradiction, Frazzini e Lamont (2008)’s results indicate that mutual fund investors’

reallocation tends to reduce their wealth on average. The explanation is that the ”dumb money"

effect dominates the ”smart money" effect, since the last exists only on short horizons, whereas

the first is long-lived.

Finally, Gil-Bazo e Ruiz-Verdú (2009) investigate the relationship between fee and

performance and reveal a puzzling phenomenon: funds with worse before-fee performance tend

to charge higher fees. They hypothesize that this is the result of strategic fee-setting. However,

Hu, Chao e Lim (2016) demonstrates that investor sentiment is a better explanation of the effect.
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3 Methodological procedures

3.1 Data

Our data regarding equity mutual funds were extracted from Economatica, a Brazilian

financial data provider. In addition, we get data for factor portfolios (market, size, value, and

momentum) and the Brazilian risk-free rate from NEFIN-USP. Finally, from Bloomberg, we

extract data about IBrX, a Brazilian market index that tracks the stock performance of 100 large

companies listed on B3, the Brazilian stock exchange. All this data is in daily frequency and

starts on 2004-02-01 and ends on 2021-12-31. It is also valid to state that the fund’s returns are

net of fees.

Even though our data start at the beginning of 2004, we only start making predictions for

2008. We do that to ensure we have enough data to train our model properly. In addition, we

need 12 months of data to create the first set of features. In the end, the data from February 2005

to December 2007 is used only for model training. In total, the predictions for January 2008 use

more than 2750 observations, ensuring that, from the first prediction, the model has enough data

to properly learn.

It is also essential to define the criteria for selecting a fund for our analysis. The first is

that it needs to be active for at least 12 months. In addition, during the estimation and evaluation

period, it must have data for at least 90% of the trading days. Finally, we eliminate funds with

less than 10 million reais (EVANS, 2010), which is close to 2 million dollars in the end of 2022.

Because we have some outliers in the funds’ returns, we winsorize our return data in the

to 1st percentile, meaning that each day the extreme observations - the ones below the 1st and

above the 99th percentile - are replaced by the values corresponding to these percentiles.

3.1.1 Dependent Variable

First, we formally define our dependent variable. As in Kaniel et al. (2022), this will be

the fund’s abnormal return (Rabn
i,t ). We begin by writing,
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Table 1 – Data Summary Statistics

Min. 1st Qu. Median Mean 3rd Qu. Max.

# Funds 45 189 484 469.3 605.5 1272

Return-based

Abnormal Return -0.34 -0.01 0.01 0.01 0.02 0.35
MIR (STM) 0 0 0.01 0.09 0.14 1.13
CVaR (STM) -0.25 -0.03 -0.02 -0.02 -0.01 0
Track Error (STM) 0 0 0.01 0.01 0.01 0.08
Kurtosis (STM) 1.29 2.29 2.73 3.03 3.36 19.73
Alpha (STM) -93.53 -0.6 0.06 0.06 0.72 6.58
Beta-Market (STM) -9.9 4.47 7.64 8.92 11.6 92.21
Beta-Size (STM) -6.42 0.01 0.89 0.97 1.84 10.54
Beta-Value (STM) -8.2 -1.5 -0.53 -0.61 0.41 7.28
Beta-Momentum (STM) -7.46 -0.52 0.38 0.42 1.28 9.28
R2 (STM) 0 0.73 0.87 0.79 0.94 1
IVol (STM) 0 0 0 0 0 0.04
MIR (Mom.) 0 0 0 0.03 0.05 0.37
CVaR (Mom.) -0.21 -0.04 -0.03 -0.04 -0.02 0
Track Error (Mom.) 0 0.01 0.01 0.01 0.01 0.04
Kurtosis (Mom.) 2.21 3.51 4.08 6.75 7.2 89.56
Alpha (Mom.) -108.85 -0.53 0.21 0.26 1.01 7.07
Beta-Market (Mom.) -7.81 18.2 28.63 32.6 41.04 216.76
Beta-Size (Mom.) -12.01 1.4 3.25 3.38 5.3 20.27
Beta-Value (Mom.) -12.84 -3.46 -1.43 -1.67 0.31 13.48
Beta-Momentum (Mom.) -11.14 -0.37 1.3 1.62 3.5 13.16
R2 (Mom.) 0 0.71 0.85 0.77 0.92 1
IVol (Mom.) 0 0 0 0.01 0.01 0.02
MIR (STR) 0 0 0.01 0.08 0.14 1.13
CVaR (STR) -0.25 -0.03 -0.02 -0.02 -0.01 0
Track Error (STR) 0 0 0.01 0.01 0.01 0.08
Kurtosis (STR) 1.29 2.28 2.71 3.02 3.35 19.73
Alpha (STR) -20.93 -0.59 0.07 0.07 0.73 6.58
Beta-Market (STR) -9.9 4.5 7.62 8.92 11.56 92.21
Beta-Size (STR) -6.42 0.02 0.9 0.97 1.86 10.54
Beta-Value (STR) -8.38 -1.55 -0.55 -0.65 0.39 7.94
Beta-Momentum (STR) -7.46 -0.53 0.37 0.41 1.27 9.28
R2 (STR) 0 0.73 0.87 0.8 0.94 1
IVol (STR) 0 0 0 0 0.01 0.04

Fund’s Characteristics

AUM 10000.9 29596.4 73535.7 224579 194415 12198579
Inflows 0 191.3 9740 72139.76 47519.4 5881765
Outflows 0 400 9000 49837.16 38496.7 2881490
% Flow -2.37 -0.1 0 1.23 0.33 8065.4
# Shareholders 0 2 8 572.84 65 149767
Fees 0 0.14 1 1.06 1.9 6
Leveradge 0 0 1 0.52 1 1
Open 0 1 1 0.98 1 1
FoF 0 0 1 0.52 1 1
Exclusive 0 0 0 0.1 0 1
Age 1 2.44 4.73 5.84 8.08 41.91



Chapter 3. Methodological procedures 15

Ri,t−12:t−1 = αi +β
′
i Ft−12:t−1 + εi,t−12:t−1 (3.1)

In this case, Ft−12:t−1 is the matrix containing the daily returns of the Carhart (1997)

factors (Market, SMB, HML, WML), and βi is the vector containing the fund’s i factor loadings.

Ri,t−12:t−1 is the fund’s after-fee returns.

Finally, the abnormal return of the fund i at time t will be:

Rabn
i,t = Ri,t −βiFt (3.2)

In summary, the fund’s abnormal return is the difference between the realized return at

time t and the expected return for time t based on the factor loadings from the previous periods

(t −12 until t −1) and the factors’ returns at time t.

3.1.2 Independent Variables

We can divide our explanatory variables into two main groups: the ones based on the

returns and the others based on fund characteristics. Summary statistics for all these variables

are presented in Table 1.

3.1.2.1 Return Based

First, following a similar procedure used by Kaniel et al. (2022), we consider three time

frames based on the momentum literature. However, unlike Kaniel et al. (2022), that only used

this time frame for the variables related to momentum, every return-based metric will have one

version for each time frame. These periods are: (i) short-term momentum (t −2); (ii) short-term

reversal (t −1); momentum (t −12 until t −3). The first two periods are based on Jegadeesh e

Titman (1993) and the third on Fama e French (1996).

Now that we have established the time frames, we present the return-based variables.

First, there are those related to the regression of the fund’s return against the Cahart four-factor

model (CARHART, 1997); these are the alpha (intercept), betas related to the market, size,

value, and momentum factors, and the regression’s R2. In addition, we have the Conditional VaR

(ROCKAFELLAR; URYASEV et al., 2000; BALI; GOKCAN; LIANG, 2007), tracking error,

modified information ratio (ISRAELSEN et al., 2005), kurtosis, and Idiosyncratic Volatility.
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Mamaysky, Spiegel e Zhang (2007) present evidence that, when sorting funds based on

the estimated alpha, the funds in the top (bottom) decile will not be the future winners (losers).

In fact, the funds in these deciles are those with the greatest estimation error. For that reason, as

in DeMiguel et al. (2021), we use the raw alpha scaled by the standard error (t-stat) to account

for this estimation error.

Table 1 presents the summary statistics of the variables. First, it is interesting to see that,

unlike returns, the abnormal return has a mean different from 0. In fact, both the mean and the

median round to 1% per month. Another point that deserves observation is the fact that most

funds have positive exposure to size and momentum and negative exposure to value.

3.1.2.2 Funds’ Characteristics

We consider ten different variables related to the funds themselves. These are: (i) last

available information about assets under management (AUM); (ii) inflows in the last twelve

months (Inflows); (iii) outflows in the last twelve months (Outflows); (iv) ratio between net

funding (inflow - outflow) and AUM at the beginning of the period (% Flows); (v) number of

shareholders (# Shareholders); (vi) dummy variable indicating if the fund is allowed to take on

leverage positions (leveraged); (vii) dummy variable indicating if the shareholders are allowed to

redeem the invested capital (Open); (viii) dummy indicating if the fund is exclusive - can have

only one investor (Exclusive); (ix) and the age of the fund (Age); and (x) lockup period.

Analyzing the distributions of these variables from Table 1, we can see that the median

fund has close to fifteen million dollars in AUM and has experienced close to zero net flows in

the sample. Furthermore, it has just eight shareholders, whereas the mean number of shareholders

in the sample is close to 570, indicating that few funds hold the majority of shareholders. This

fact is also consistent with the incubation bias (EVANS, 2010). In addition, half of the funds can

have leveraged positions, and a similar amount are Funds of Funds. Moreover, the vast majority

are open, and close to 10% are exclusive. Finally, the average fund is five years and nine months

old.

3.2 Machine Learning Models

Machine Learning models demand a considerable amount of data to be effective (YAO,

2021). Because we consider an extended time frame in our analysis and the Brazilian capital
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Table 2 – Machine Learning Models Reference

Acronymous Algorithm Type Reference

XGB XGBoost Ensemble Chen e Guestrin (2016)
SVM Suport Vector Machine Other Cortes e Vapnik (1995)
RID Ridge Regresion Linear Hoerl e Kennard (1970)
RF Random Forest Ensemble Breiman (2001)
LR Linear Regression Linear -

LGB Light Gradient Boosting Ensemble Ke et al. (2017)
LAS LASSO Regression Linear Tibshirani (1996)
KNN K Nearest Neighborhood Other Fix e Hodges (1989), Altman (1992)
GB Gradient Boosting Ensemble Friedman (2001)
ET Extra Trees Ensemble Geurts, Ernst e Wehenkel (2006)
EN Elastic Net Linear Zou e Hastie (2005)

DUM Dummy Other -
DT Decision Tree Other -

ADA Ada Boost Ensemble Freund e Schapire (1997)

Source: the authors.

market is still in development, one might raise concerns about the validity of our approach. As

we can see in Table 1, there are, on average, close to 500 funds that meet our criteria. In fact,

the month with the least amount of data has 45 funds, but we only include these observations

in the training data. With this concern dismissed, we can present the ML models that will be

considered.

For this paper, we will consider a total of fourteen machine learning algorithms that will

be grouped into two categories: linear and ensemble models. Algorithms that do not fit in either

will be grouped in a separate category. Linear models are linear combinations of the independent

variables, and ensemble models, in turn, combine multiple other models in the prediction process.

With exception of LightGBM and XGBoost, the implementation of the algorithms come from

the Python package scikit-learn (PEDREGOSA et al., 2011). The first two algorithms come from

the homonymous Python packages.

It is also valid to state that each month we normalize the features in both the training

and test sets. To avoid data leakage, we estimate the mean and standard deviation using only

the training set. We must follow this procedure because some models rely on the calculation of

distances, which is sensitive to the feature’s scale.
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3.2.1 XGBoost

Taking into account that XGBoost is our main algorithm, we present a high-level expla-

nation of the model’s inner workings. For a complete explanation, we direct the reader to the

original article (CHEN; GUESTRIN, 2016).

The first difference between XGBoost and other ensemble algorithms is the way it builds

trees. Unlike Random Forest, for example, which splits nodes using Gini or Entropy, XGBoost

splits based on Similarity Score (SS):

SS j =
(∑n

i=1 yi − ŷi)
2

n+λ
(3.3)

where yi is the observed value, ŷi is the predict value, n is the number of residuals in leaf

j, and λ is a regularization parameter. It is important to note that the numerator is the squared

residual sum, not the typical residual sum of squares. If the similarity score is small, the residuals

are dissimilar - they cancel each other out; in contrast, if the value is big, the similarity between

residuals is greater.

One last step before starting the algorithm is stating that XGBoost is a recursive model

that will keep building trees until it reaches a user-defined maximum number of trees or the gain

for adding a new tree is sufficiently small.

The first step in the process is to compute the average of the dependent value and consider

it as the first prediction ( f (x)0). After that, the first tree leaf is populated with the residuals of

this prediction. The next step is splitting the root, which results in a new branch (new left and

right leaf). For that, we use the Similarity Score and the Information Gain, which is defined as:

Gain = [SSle f t +SSright −SSroot ]− γ (3.4)

Calculating the Information Gain for different possible thresholds and features, we split

our data based on the feature and threshold combination that results in the greatest Gain. In reality,

we split only if the Gain is positive, meaning that γ works as a pruning parameter: depending

on the value defined, the tree may grow more or less. As with the λ parameter, γ reduces the

chance of overfitting the training dataset. The tree will grow until the Gain is negative. With the

complete tree we calculate the output value for each leaf as:
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Out put Value j =
∑i∈I j yi − ŷi

n+λ
(3.5)

As we can see, if λ = 0, a jth leaf output value will be, simply, the average of the

residuals in that leaf. Having the complete tree as well as the output values, we make new

predictions based on the formula below:

f (x)t = f (x)t−1 +ηOut put Value(x) (3.6)

where η is the learning rate, which controls how quickly the algorithm adapts to the

training set.

3.2.2 Other ML algorithms

The first linear model that we will consider is linear regression. This model will minimize

the sum of squared errors. Mathematically, the objective function is:

β̂
OLS = argmin

β∈Rk
(||y−Xβ ||22) (3.7)

where ||.||2 denotes the `2 norm.

The other linear models considered are regularized regression methods. In Ridge regres-

sion (HOERL; KENNARD, 1970), for example, we abandon the requirement of an unbiased

estimator and minimize the residual sum of squares plus a penalty term on the betas (L2 reg-

ularization). The idea of applying a penalty function goes back to the bias-variance trade-off

in machine learning: with an increase in the bias from the penalty function, the model tends to

generalize better on the test data. Mathematically,

β̂
RID = argmin

β∈Rk
(||y−Xβ ||22 +λ ||β ||22) (3.8)

LASSO (TIBSHIRANI, 1996) is very similar to Ridge regression: both have a regular-

ization term in the objective function and are robust to multicollinearity. However, while Ridge

considers the square of the coefficients, LASSO considers their absolute value (L1 regularization).

In addition, unlike Ridge, which can only shrink a coefficient toward zero, LASSO can shrink

the coefficient all the way to 0, leading to a sparser solution. Again, mathematically,
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β̂
LAS = argmin

β∈Rk
(||y−Xβ ||22 +λ ||β ||1) (3.9)

where ||.||1 denotes the `1 norm.

Finally, Elastic Net (ZOU; HASTIE, 2005) overcomes the LASSO’s limitations related

to situations with many features and few observations. To do that, Elastic Net adds a quadratic

part to the LASSO penalty. It is also interesting to notice that the Elastic Net can be interpreted

as a generalization of the previously discussed linear algorithms. From Equation 3.10, we can

see that if λ1 = λ2 = 0, we have the classical linear regression objective function; if λ1 = 0, we

have ridge regression; finally, if λ2 = 0, we have LASSO.

β̂
EN = argmin

β

(||y−Xβ ||2 +λ1||β ||1 +λ2||β ||22) (3.10)

Exiting the world of linear models, we present, first, the Support Vector Machine

(CORTES; VAPNIK, 1995), which searches for a hyperplane in N-dimensional space (N =

number of features) with the maximum number of points. Differently from the linear models

that minimize a cost function that includes the sum of squared errors, SVM will minimize the

L2-norm of the coefficient vector, subjected to all residuals having a value less than ε (arbitrarily

defined). This model is not used very often for regression problems, but has some advantages,

like the fact that it is robust to outliers, can be easily updated and usually generalizes well.

Opposed to that, this algorithm may not be appropriate when dealing with large datasets, tend to

not perform well with overlapping target classes, and when there are few degrees of freedom.

In turn, the k-nearest neighbors algorithm (FIX; HODGES, 1989; ALTMAN, 1992)

receives an arbitrarily defined k parameter and the training data and returns, for each prediction,

the average of the k closest observations. The definition of ”closest" comes from the Euclidean

distance. As consequence of the model’s simplicity, we can easily generalize the algorithm

considering n dimensions (number of features) and m observations. Supposing we want to make

a prediction for a new observation xm+1, we first calculate the distance from this point to every

other point available in the training set (i = 1,2, ...,m):

d(xm+1,xi) =

√
n

∑
j=1

(xm+1, j − xi, j)2 (3.11)
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After that, we sort the resulting list in ascending order and average the first k observations.

This algorithm has advantages, like not requiring a training period and being easy to implement

and update. Despite that, it is sensitive to outliers - uses the square of the difference - and

doesn’t scale well - because the euclidean algorithm requires squaring every difference, as the

dataset gets bigger, the performance deteriorates rapidly. By default, k = 5 in the sckit-learn

implementation.

Next, as the name indicates, the decision tree algorithm uses a tree-like decision model.

The process involves doing recursive binary splitting, in which every feature is considered, and

the split (decision) is done by minimizing a cost function - usually Gini or Entropy.

After that, we analyze the dummy model. The idea is not to use this model for making

predictions but to have a baseline to compare the other models. What it does is really simple: its

predictions are equal to the average value of the dependent variable in the training data. Because

the prediction is the same for every observation, the model can not discern between good and

bad mutual fund managers.

It is not easy to determine the best choice among Machine Learning tools. An ensemble

is a solution to this situation, as it is a combination of several algorithms with the objective

of trying to extract the best from each technique (ZHOU, 2012). All the ensemble methods

presented here will blend multiple models (usually weak learners) to improve out-of-sample

results.

Another point in ensemble models is the difference between bagging (BREIMAN, 1996)

and boosting (FREUND; SCHAPIRE et al., 1996) algorithms. In the last, trees are created

sequentially in such a way that the next tree learns from the mistakes made by the previous

one and updates the residual error based on that information. Usually, these trees consist of

weak learners: models that tend to perform just slightly better than random guessing. In contrast,

bagging algorithms work through a voting scheme: multiple full-sized trees are grown and the

model’s final prediction is the average of the predictions made by all trees. Random Forests

is an example of a bagging algorithm, while Gradient Boost and XGBoost are examples of

boosting algorithms. Finally, it’s also valid to note that boosting algorithms tend to outperform

(QUINLAN et al., 1996).

Random Forest, for example, will combine the output of various decision trees to make

a single prediction. The original theoretical properties of random forests are demonstrated
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in Breiman (2001) for classification trees. Similar to RF, Extra Trees (GEURTS; ERNST;

WEHENKEL, 2006) will combine different decision trees, but this model has an additional

bias-variance analysis.

In random forests the classification is taken by a vote, hence each tree votes for a

particular class and the class with the most votes wins, according to function

mg = M−1
Σ

M
m=11{hm(x)=y}−max

j 6=y
(M−1

Σ
M
m=11{hm(x)= j}) (3.12)

where the left part is the average number of votes based on the M trees hm for the correct

class. The right part is the maximum average for any other class. The mg is the margin and

reflects the confidence that the aggregate forest will classify properly.

In the random forest, diversification among many trees was expected to improve the

overall quality of the model. In boosting, we seek to iteratively improve the model whenever

a new tree is added. This work used four boosting models: Gradient Boosting, Light Gradient

Boosting, Ada Boost and XGBoost.

AdaBoost (FREUND; SCHAPIRE, 1997) improves the learning process by progressively

focusing on the instances that yield the largest errors. For that, the algorithm starts by assigning

equal weights for each observation. After that, using the Gini Index, a stump - a decision tree

with just one node - is built. Next, the initial weights are updated in a way that the next tree is

penalized if it commits the same mistakes as the previous ones. Finally, we normalize the new

sample weights to ensure that they sum up to one. This process is repeated until a low training

error is achieved.

Finally, in Gradient Boosting (FRIEDMAN, 2001), decision trees are generally also used.

Today, this algorithm is considered a generalization of AdaBoost. Light Gradient Boosting (KE

et al., 2017) is a more computationally efficient implementation of Gradient Boosting.

To ensure that the comparison between the predictions of the above models is fair, we

must guarantee that all models are trained in the same data. Allowing a model to train on more

observations or features makes the comparison useless, as we can not decompose the differences

in performance between differences in the data and differences in the models’ structure. Linear

regression and some other algorithms don’t handle missing data natively. In view of this fact, we

drop the observations that contain missing data. In total, we drop 343 observations out of 95268.
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4 Results

4.1 Pooled Regression

First, we present the results using traditional statistical tools. The pooled regression

(Table 3) shows that out of 45 estimated parameters, 28 are statistically significant at the 5% level.

Even though many of our features were not significant, they still might be important for Machine

Learning Algorithms, as they explore nonlinearities and interactions between the variables. We

omitted variables that were not statistically significant at the 10% level for space-related reasons.

In addition, we can see that the return-based metrics seem to carry more information

about future abnormal returns when compared to characteristics-based metrics: in our model,

close to 80% of the return-based features were significant, while only close to 50% of the

characteristics-based ones were. In this case, only assets under management (AUM), outflows,

fees, and the dummies indicating if the fund is open and if it can take on leverage were significant.

However, with exception of age, the characteristics-based metrics that weren’t significant didn’t

have support in the literature regarding their predictive power over mutual funds’ returns.

Furthermore, by analyzing the coefficients, it is possible to see that there seems to be a

positive relationship between risk and abnormal return for shorter terms (CVar (STM), Beta-Size

(STM), Beta-Value (STM)). This fact is consistent with the fundamentals of modern finance

(MARKOWITZ, 1952; SHARPE, 1964). However, when we analyze more extended periods

(Mom.), the relation is inverted (CVar (Mom.), Beta-Market (Mom.), Beta-Size (Mom.), Beta-

Value (Mom.), Beta-Momentum (Mom.)). This fact is consistent with a more recent literature

that highlights the out-performance of less risky assets compared to more risky ones (BLITZ;

VLIET, 2007; HOUWELING; ZUNDERT, 2017).

In addition, one might expect older funds to have more significant abnormal returns

than newer ones after controlling for AUM, due to decreasing returns to scale (HARVEY; LIU,

2021). This is a reasonable expectation since one can imagine that an older fund should have a

more structured investment process and a more experienced management team. However, our

regression shows a negative relationship between abnormal return and age. Even though it seems

counter-intuitive, this phenomenon is well documented in the literature (see Stafylas, Anderson
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e Uddin (2016) for revision) and might be linked to career concerns, in which older mutual fund

managers tend to be less risk-averse than younger ones (CHEVALIER; ELLISON, 1999). This,

in turn, might be detrimental to the fund’s performance.

Finally, it is interesting to notice that out of three metrics related to fund flow, only

outflow was significant. The fact that inflow was not statistically significant goes against an

extensive literature, revised above, that relates fund inflow to future performance (GRUBER,

1996; ZHENG, 1999; KESWANI; STOLIN, 2008).

4.2 XGBoost Deciles

In this section, we explore how effectively the XGBoost model separated the equity

mutual funds with good from those with bad relative future performance. For that, for every

month from February 2008 to December 2021, we rank the funds based on the predictions

made by the XGBoost model. After that, we divide the funds into deciles and simulate an

equal-weighted portfolio that goes long in every fund in each decile.

Table 4 Panel A allows us to see how effective the XGBoost model was in the task

specified above. First of all, the first decile has an almost three times higher return than the

last one. More impressively, the first decile also carries 12% less risk. For comparison reasons,

the Brazilian market index (IBrX), in the same period, had an annualized return of 5.47%

and an annualized volatility of 27.29%. This leads to the first decile’s modified Sharpe Ratio

(ISRAELSEN et al., 2005) being close to twenty times bigger than that of the market.

Vardharaj, Fabozzi e Jones (2004) points out that when an active manager takes positions

that deviate a lot from the benchmark, he or she will have significant active returns, either positive

or negative. From the results in Table 4, we can see precisely this parabolic relationship: the

extreme deciles have higher tracking errors while also having significant returns. In contrast, the

deciles in the middle have lower tracking errors and lower returns in absolute terms.

Moreover, another point of interest is the alpha of each decile. As expected, the highest

(numerically) four-factor alpha is in the first decile, while the lowest is in the last decile. However,

none of the portfolios had an intercept statistically different from 0, considering a 5% significance

level, and only the tenth decile had a significant and negative alpha at 10%. This suggests that

none of the portfolios generated or destroyed value. This fact may be (partially) explained by the
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Table 3 – Pooled Regression

Dependent variable:

Abnormal Return

MIR (STM) 0.001∗ (0.001)
CVaR (STM) −0.022∗∗ (0.010)
Kurtosis (STM) −0.0002∗∗∗ (0.0001)
Beta-Size (STM) 0.0002∗ (0.0001)
Beta-Value (STM) 0.001∗∗∗ (0.0001)
Beta-Momentum (STM) 0.0004∗∗∗ (0.0001)
R2 (STM) −0.004∗∗∗ (0.001)
IVol (STM) −0.373∗∗∗ (0.096)
MIR (Mom.) 0.019∗∗∗ (0.003)
CVaR (Mom.) 0.050∗∗∗ (0.006)
Track Error (Mom.) 0.298∗∗∗ (0.052)
Kurtosis (Mom.) 0.0002∗∗∗ (0.00002)
Alpha (Mom.) 0.0002∗∗∗ (0.00004)
Beta-Market (Mom.) −0.0001∗∗∗ (0.00001)
Beta-Size (Mom.) −0.001∗∗∗ (0.00005)
Beta-Value (Mom.) −0.001∗∗∗ (0.00005)
Beta-Momentum (Mom.) −0.001∗∗∗ (0.00004)
R2 (Mom.) 0.007∗∗∗ (0.001)
IVol (Mom.) −0.529∗∗∗ (0.091)
MIR (STR) 0.002∗∗ (0.001)
CVaR (STR) 0.017∗ (0.010)
Track Error (STR) 0.138∗∗∗ (0.042)
Kurtosis (STR) −0.001∗∗∗ (0.0001)
Beta-Size (STR) −0.0003∗∗∗ (0.0001)
Beta-Value (STR) 0.0003∗∗∗ (0.0001)
Beta-Momentum (STR) 0.0002∗∗ (0.0001)
AUM −0.000∗∗∗ (0.000)
Outflows 0.000∗ (0.000)
Fees −0.001∗∗∗ (0.0002)
Leveraged −0.000∗∗ (0.000)
Open 0.003∗∗∗ (0.001)
Intercept 0.010∗∗∗ (0.001)

Observations 76,549
R2 0.030
Adjusted R2 0.029
Residual Std. Error 0.026 (df = 76504)
F Statistic 52.855∗∗∗ (df = 44; 76504)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Source: the authors.
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fact that we work with after-fee returns (FAMA; FRENCH, 2010).

After analyzing the deciles’ returns statistics, we now analyze the deciles’ average

characteristics. Table 4 Panel B shows that the funds that the model predicts higher abnormal

returns tend to be, on average, bigger (AUM), younger, have fewer shareholders, and a slightly

greater management fee and lock-up period. In contradiction with the literature, the decile

containing the fund with highest predictions tend to be bigger (CHEN et al., 2004; YAN, 2008)

and have a bigger management fee (GIL-BAZO; RUIZ-VERDÚ, 2009). However, the fact that

they tend to be younger (WEBSTER, 2002) and have a longer lock-up period (ARAGON, 2007)

are in agreement with the existing literature.

Also, the fact that mutual funds in the first decile tend to charge more is a great indication

that the strategy is actually able to select funds with top gross and net future returns. If the

average management fee difference between the first and last decile was significant, the model

could be discerning between high and low-cost funds, which is not what we aim to do.

Finally, one last fact deserves attention. As we show, the funds for which the model

predicts higher abnormal returns tend to be, on average, bigger (AUM) and have fewer share-

holders. This seems to point towards a small group of more capitalized investors having a greater

ability to discern funds with future good and bad abnormal returns. In contrast, a group with a

higher number of members but less capitalized tends to be on the opposite side: they select the

funds with lower abnormal future returns. Future works could investigate if there is a correlation

between these groups and institutional and retail investors.
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4.3 Weighting Schemes

As in Kaniel et al. (2022), we also want to study how the weighting method impacts

the final portfolio. Based on this analysis, we can uncover how effective our predictions are

in separating great (disastrous) mutual funds in a sample already populated with good (bad)

ones. In subsection 4.2, we showed that the predictions can efficiently discern between the top

and bottom performers. Now, we investigate if the ranks based on the predictions 1 and the

predictions themselves 2 can add value to the already defined portfolio.

For that, we build three Long & Short portfolios. All of them go 100% long in the 30%

funds with the highest predicted abnormal return, 100% short in the 30% funds with the lowest

predicted abnormal return, and 100% long in the risk-free rate. The only difference between them

is related to how the weights of each fund inside the long and the short portfolios are determined.

The first portfolio uses the equal-weighted (1
n ) method. Even tough it’s a really simple (”naive")

way of determining the portfolio weights, it has shown out-of-sample superiority over other

methods (DEMIGUEL; GARLAPPI; UPPAL, 2009; PLYAKHA; UPPAL; VILKOV, 2012). The

second portfolio is based on the ranking, and the last based on the raw predictions.

As we can see from Table 5, there is a positive monotonic relationship between the alpha

and the degree of information used from the predictions: the equal-weighted portfolio uses the

least amount of information and has the lowest alpha; the ranking-based portfolio uses a bit more

of the information contained inside the predictions and has the second highest alpha; finally, the

portfolio based on the raw predictions, which uses the complete information, has an alpha more

than 40% greater than the equal-weighted portfolio. These results show that the abnormal return

predictions carry essential information about future returns, way beyond the one required for
1 Unlike Kaniel et al. (2022), we also present the results based on ranking weights:

wi,t =
it

∑i it
where i = 1, ...,n represents the index of each fund in the prediction ranking, and wi,t is the final weight of

each fund in the portfolio.
2 As in Kaniel et al. (2022), we calculate the portfolio weights based on the predictions as:

Top portfolio: µi,t = µ̂i,t −min(µ̂i,t)

Bottom portfolio: µi,t = µ̂i,t −max(µ̂i,t)

wi,t =
µi,t

∑i µi,t

where µ̂i,t are the XGBoost predictions, and wi,t are the final weights
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decile construction.

In addition, we must point out the fact that all the Long & Short portfolios generated a

positive, statistically, and economically significative alpha at 5%. Furthermore, the portfolios

also presented an expressive annualized return with low volatility, resulting in portfolios with

a very high Shape Ratio (0.7). On the risk side, we can also observe the CVaR and Maximum

Drawdown were very low. Even though it’s not possible to short a mutual fund, these results

strongly suggest that investors should avoid the funds with the lowest predictions and, in turn,

give preference to the high-ranking ones.

Table 5 – Long & Short Portfolios Weighting Schemes

Equal Weighted Rank Prediction

Annual. Return 12.18 12.86 13.43
Std. Deviation 4.22 4.99 5.92
Alpha 2.41 2.95 3.43
t(alpha) 2.23 2.32 2.24
Beta 0.05 0.06 0.06
Info. Ratio 0.1 0.12 0.14
Sharpe Ratio 0.69 0.71 0.7
CVaR -0.84 -0.97 -1.1
Max. Drawdown 9.69 11.61 12.97

4.4 Feature Importance

From Figure 1, we can see that CVaR (Mom.) was the single most important variable

for prediction 3. In addition, CVaR (STR) was the third most important feature, indicating that

using multiple time frames can add a lot of value to the model. Another interesting point is the

dominance of the Momentum and Short Term Reversals periods over the Short Term Momentum:

out of the fifteen most important features, only one referred to the STM time frame. Furthermore,

we can see a clear prevalence of metrics related to risk at the top of the most important features.

Again, out of the fifteen most relevant variables, only three are not directly risk related (R2(ST R),

R2(Mom.), and Alpha (Mom.)).

Moreover, there was also clear domination of the return-based metrics over the characteristic-

based ones, which is intriguing since the literature indicated some of these metrics as carrying

considerable prediction power over the funds’ future returns. This is the case for flows, AUM,
3 To analyze XGBoost feature importance, we use information gain - average gain (Equation 3.4) of splits which

use the feature.
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Figure 1 – XGBoost Feature Importance

lockup period, and age, for example. On top of that, (KANIEL et al., 2022) noted that fund

momentum and fund flow were the most important predictors, contrasting greatly with our

results.

4.5 Comparison of machine learning algorithms

Before running any tests, we needed to choose a Machine Learning algorithm to o

decrease the likelihood of our results being biased (multiple testing, Prado (2015)). We chose the

XGBoost because of its high performance in various Machine Learning problems and because it

is computationally efficient. In this section, we evaluate if we chose the best model and compare

its performance against other ML models.

To accomplish that, we will rely upon Figure 1. The x-axis in this figure presents the

Mean Absolute Error (MAE) for the predictions made by each ML model. We use MAE instead

of other metrics like Mean Squared Error (MSE) because it is less sensitive to outliers.

The y-axis, in turn, presents information about the four-factor alpha for the Long &

Short portfolio based on the predictions of each ML algorithm. To construct this portfolio, every

month, we sort the funds based on the predictions made by each model. Then, we create an

equal-weighted L&S portfolio that goes long the 30% funds with the best predictions and short

the 30% funds with the worse.

In addition, we scale the points based on the time (in seconds) it takes for the model to
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Figure 2 – ML Model Comparison

Note:”Annual. Alpha" is the Carhart (1997) alpha annualized over 252 days of the Long & Short portfolio.
”Execution time" is the time (seconds) for the model to train on the data from February 2005 to November
2021 and predict December 2021. Refer to Table 2 for the acronymous meanings.

train on the data from February 2005 to November 2021 and predict December 2021. We do that

to understand the trade-off between performance and cost. Finally, the points’ colors indicate the

model type (refer to Table 2).

A comparison between model types shows that the ensemble methods did remarkably

well. This group generated high alphas with varying levels of MAE. The ensemble outperformed

the linear models, presenting additional evidence that nonlinear relationships and interactions

between the variables exist. In addition, the performance of Support Vector Machines, which

was much worse than the baseline model (Dummy), and Decision Trees indicate that SVM may

not be suitable for the task and that DT works much better in an ensemble model.

Finally, it is safe to say that the model that offered the best performance-cost relationship

is the LGB. This model generated the second biggest alpha while being more than 200 times

faster to train than the best performing algorithm (Extra Tress). The outperformance of this

model is in line with the literature (LI; ROSSI, 2020; KE et al., 2017). XGBoost, our initial

choice, did not perform as well but could still differentiate good and bad equity mutual funds

with high precision (see Table 4).
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5 Conclusion

We contribute to the literature by presenting additional evidence of the ability of machine

learning models to discern between equity mutual funds that will outperform and underperform.

Furthermore, we tested many ML algorithms and showed that Light Gradient Boosting (LGB) is

the model with the highest capacity to select future winners and identify future losers, when we

balance predictive power and computational resources required. If we consider only the resulting

portfolio alpha, Extra Trees is the most suitable algorithm.

Even though our previously selected model (XGBoost) did not perform as well, the

predictions made by this model allowed us to sort the funds in deciles in such a way that the first

decile (higher predicted abnormal return) outperformed the last decile (lower predicted abnormal

return) by almost three times while being less risky.

In addition, we could also provide additional evidence of the greater predictive power of

Machine Learning algorithms compared to the traditional statistical methods (linear models).

The best ML (ET) model generated an alpha 3.67 times greater when compared to the best linear

model (Ridge Regression).

Furthermore, we showed that a portfolio may benefit if the predictions are also used for

defining the weight of each fund in the portfolio, instead of just ranking for decile separation.

The strategy that follows this procedure delivered an alpha more than 40% greater than the

naive equal-weighted portfolio. In addition, all Long & Short portfolios generated a positive,

statistically, and economically significative alpha.

Moreover, we presented evidence that the risk-related metrics were the most important

for predictions. CVaR was the first and third most important variable. Contrary to previous

research, we also found that metrics based on characteristics of the fund, like Assets Under

Management, Flows, Age, and Lockup Period weren’t very relevant.

This work may benefit society through many different channels. A lot of Brazilians have

financial exposure to the financial market, via personal savings, Funds of Funds, and retirement

plans, for example. In light of this fact, it is clear that having a systematic way to identify future

winners and avoid future losers has the potential to improve the quality and robustness of the

investment process of a large group of people and institutions. Another advantage is that this
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method allows the market to be more efficient, providing an easy and fast way to reward skilled

managers and penalize unskilled ones. In the coming years, this kind of analysis will become

commonplace, and society will be able to harvest the benefits of a more efficient and developed

market.

Finally, we present some possible future developments for interested researchers. First,

we could do some hyper-parameter tuning in a validation set before making the predictions.

Second, we could use more robust methods for outlier detection and treatment. Lastly, we could

check how the alpha decays as we make the holding period longer.
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