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using a fractionally cointegrated VAR model

Abstract

This paper addresses the modeling and forecasting of daily high and low asset prices in the

Brazilian stock market using a fractionally cointegrated vector autoregressive model (FCVAR).

Forecasts are then used in a simple trading strategy to evaluate the application of technical analy-

sis (TA) for equity shares traded at the BM&FBOVESPA. As a flexible framework, FCVAR is

able to account for two fundamental patterns of high and low asset prices: their cointegrating

relationship and the long-memory of their difference (i.e., the range), a measure of realized

volatility. The analysis comprises the twenty most negotiated stocks at the BM&FBOVESPA

during the period from January 2010 to May 2017. Empirical findings indicate a significant

cointegration relationship between daily high and low prices, which are integrated of an order

close to the unity, as well as the range displays long memory and is in the stationary region in

most of the cases. Based on historical data, results support that high and low prices of equity

shares are largely predictable and their forecasts can improve TA trading strategies applied on

Brazilian stock prices. Further, the fractionally cointegrated approach appears as a potential

forecasting tool for market practitioners, improving investment strategies.

Keywords: High and low prices, technical analysis, fractional cointegration, stock market,

forecasting.

Resumo

Este artigo considera a modelagem e a previsão dos preços máximo e mı́nimo diários de ativos

financeiros no mercado de ações do Brasil com base em um modelo de vetores autoregressivos

fracionalmente cointegrados. As previsões são então utilizadas em uma estratégia de trading

para se avaliar a aplicação da análise técnica envolvendo ações negociadas na BM&FBOVESPA.

O modelo de cointegração fracionada apresenta-se como uma abordagem flexı́vel que considera

dois padrões fundamentais da dinâmica de preços máximo e mı́nimo de ativos financeiros: sua

relação de cointegração e a memória longa de sua diferença, i.e. a variação ou range, como

uma medida de volatilidade realizada. A análise compreende as vinte ações mais negociadas
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na BM&FBOVESPA no perı́odo de janeiro de 2010 a maio de 2017. Os resultados empı́ricos

indicam que os preços máximo e mı́nimo são significativamente cointegrados com ordem de

integração próxima da unidade, e que a variação apresenta memória longa e, na maioria dos ca-

sos avaliados, é estacionária. Com base em dados históricos, verificou-se que os preços máximo

e mı́nimo das ações podem ser previstos, e que as previsões são capazes de aprimorar estratégias

de trading baseadas em análise técnica quando aplicadas ao mercado de ações brasileiro. Além

disso, a abordagem de cointegração fracionada mostra-se como uma ferramenta potencial de

previsão em aplicações de estratégias de investimentos por agentes de mercado.

Palavras-chave: Preços máximo e mı́nimo, análise técnica, cointegração fracionada, mercado

de ações, previsão.

1. Introduction

Forecasting the future behavior of asset prices based on historical market data has been a

popular and important subject for academic research and practitioners. In particular, technical

analysts, or chartists, believe that past stock prices and trading volume may show patterns that

indicate future trends1. Therefore, trading rules that rely on past information can yield higher

profits than those that passively track the whole security market (CAPORIN, RANALDO, &

MAGISTRIS, 2013). This idea contradicts the weak-form market efficiency, which states that

all information from historical data is already incorporated in current prices (FAMA, 1970).

Numerous research papers investigating the forecasting power of different mechanical tra-

ding strategies, charts and patterns have been published over the years (SHYNKEVICH, 2016;

CHEN, SU & LIN, 2016; ZHU & ZHOU, 2009; SCHULMEISTER, 2009). For instance,

Lo, Mamaysky and Wang (2000) indicate that there are methods to systematically extract out-

performing technical patterns. Park and Irwin (2009) also state that participants in different

financial markets use technical analysis (TA), besides the lack of substantial support by aca-

demics. Indeed, Menkhoff (2010), based on the results of a survey of 692 fund managers in

five countries including the United States, argues that 87% of fund managers put at least some

importance on technical analysis and that TA becomes the most important forecasting tool in
1 On the other hand, fundamental analysts state that underlying factors that affect a company’s actual business

and its future prospects are the determinants of a stock’s value.
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decision making for shorter-term periods. Concerning the Brazilian financial market, Macedo,

Godinho and Alves (2017), Sanvicente (2015), Oliveira, Nobre and Zárate (2013) and Loren-

zoni et al. (2007) are examples supporting the applicability of technical analysis2.

The aim of this work is to contribute to previous literature on technical analysis and also

to market practitioners by evaluating a trading strategy based on high and low stock prices

forecasts using data from equity shares negotiated at the BM&FBOVESPA, the Brazilian stock

exchange. Based on an empirical analysis, the research goal is to answer the following ques-

tions: i) are high and low prices of equity shares traded at the BM&FBOVESPA predictable?;

ii) which approach is appropriate to model these prices?; iii) can high and low prices forecasts

produce profitable results using TA trading strategies?

1.1. Motivation and contribution

Traditional econometric time series models are frequently based on opening and/or closing

prices of assets, stock indices, and exchange rates (ARROYO, ESPÍNOLA & MATÉ, 2011).

This is useful in many cases, but it may be insufficient in situations where several values are

observed at each time period (day, hour, minute). For instance, if only the opening (or closing)

asset price is measured daily, the resulting time series will hide the intraday variability and

important information is missed (DEGIANNAKIS & FLOROS, 2013; HANIFF & POK, 2010).

Besides intraday time series could be modelled and forecasted, they reveal characteristics

such as irregular temporal spacing, strong diurnal patterns and complex dependence, which

result in obstacles for traditional time series models. Further, the accurate prediction of the

whole sequence of intraday prices for one day ahead is almost impossible in practical situations.

These limitations can be alleviated if the high (maximum) and the low (minimum) asset prices

are measured at each time period (ENGLE & RUSSEL, 2009).

In particular, daily high and low prices provide valuable information regarding the dynamic

process of an asset throughout time. These prices can be seen as references values for investors

in order to place buy or sell orders, e.g. through candlestick charts, a popular technical indicator

(XIONG, LI & BAO, 2017; CHEUNG & CHINN, 2001). He and Wan (2009) also stated that

the highs and lows are referred to prices at which the excess of demand changes its direction.
2 Nazário, Silva, Sobreiro and Kimura (2017) provide a rich and extensive literature review on technical analysis

considering stock markets.
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Additionally, high and low prices are related with the concept of volatility. Alizadeh, Brandt

and Diebold (2002) show that the difference between the highest and lowest (log) prices of an

asset over a fixed sample interval, also known as the (log) range, is a highly efficient volatility

measure3. Brandt and Diebold (2006) and Shu and Zhang (2006) pointed out that the range-

based volatility estimator appears robust to microstructure noise such as bid-ask bounce, which

overcomes the limitations of traditional volatility models based on closing prices that fall to

use the information contents inside the reference period of the prices, resulting in inaccurate

forecasts.

In addition, daily highs and lows can be used as stop-loss bandwidths, providing information

about liquidity provisioning and the price discovery process. According to Caporin et al. (2013),

high (low) prices are more likely to correspond to ask (bid) quotes; thus, transaction costs

and other frictions, such as price discreteness, the tick size (i.e., the minimal increments) or

stale prices, might represent disturbing factors. Finally, high and low prices are more likely

to be affected by unanticipated public announcements or other unexpected shocks. Therefore,

aspects such as market resiliency and quality of the market infrastructure can be determinant

(CAPORIN ET AL., 2013).

Although many research has been devoted to the analysis of the predictability of daily mar-

ket closing prices, few studies based on econometric time series models examined the case

of high and low prices, as for instance the works of Barunı́k and Dvořáková (2015), Caporin

et al. (2013), Cheung, Cheung and Wan (2010), Cheung, Cheung, He and Wan (2009), He

and Hu (2009), and Cheung (2007)4. On the other hand, some empirical studies suggested

methodologies designed to process high and low asset prices as interval-valued variables in

order to account for the interrelations between the prices (XIONG ET AL. 2017; XIONG ET

AL., 2015; YANG, HAN & WANG, 2014; RODRIGUES & SALISH, 2015; ARROYO ET

AL., 2011; LIMA & CARVALHO). Besides suggesting the advantages of interval-valued mo-

dels over univariate time series methods, these approaches are not able to model the dynamic of
3 The literature that considers the high-low range price as a proxy for volatility dates back to the 1980s with the

work of Parkinson (1980).
4 Caporin et al. (2013) argue that the lack of studies regarding daily high and low asset prices is surprising for

at least three reasons: i) the long histories of high and low prices data are readily available; ii) many technical
analysis strategies use high and low prices to construct resistance and support levels; iii) these prices can measure
market liquidity and transaction costs.
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the daily range properly, which may compromise forecasting accuracy.

The literature presented substancial evidence of long memory in the volatility process of

asset prices, interest rate differentials, inflation rates, forward premiums and exchange rates

(YALAMA & CELIK, 2013; GARVEY & GALLAGHER, 2012; KELLARD, DUNIS & SA-

RANTIS, 2010; BREIDT, CRATO & LIMA, 1998; ANDERSEN & BOLLERSLEV, 1997;

BAILLIE, 1996), but few of them studied the range volatility dynamics. Particularly, the work

of Caporin et al. (2013) provides empirical evidence of long memory in the ranges of all 30 of

the components of the Dow Jones Industrial Average (DJIA) index during the period from 2003

to 2010. By using a long memory forecasting framework, a fractional vector autoregressive

model with error correction (FVECM), the authors indicate a potential profit performance of

technical analysis strategies based on forecasts of high and low prices. More recently, Barunı́k

and Dvořáková (2015) evaluated the cointegration dynamics between daily high and low stock

prices and the long memory properties of their linear combination, i.e. the range, of the main

world stock market indices during the 2003-2012 period. The findings suggested that the ranges

of all of the indices display long memory and are mostly in the non-stationary region, supporting

the recent evidence that volatility might not be a stationary process.

In this context, to answer the question of whether the high and low prices of the equity

shares traded at the BM&FBOVESPA are predictable, this work provides an empirical study on

the modeling and predictability of these prices by analyzing the time-series properties of daily

high and low prices from the twenty of the most widely traded stocks at the BM&FBOVESPA

over the period from January 2010 to May 2017. Further, it is suggested a fractionally coin-

tegrated vector autoregressive model (FCVAR), formalized by Johansen (2008) and Johansen

and Nielsen (2010, 2012), to model the relationship between highs and lows, as a response the

second question proposed in this research. The motivation of this approach is twofold. First,

FCVAR modeling is able to capture the cointegrating relationship between high and low prices,

i.e. in the short-term they may diverge, but in the long-term they have an embedded conver-

gence path. Second, the range (the difference between high and low prices), as an efficient

volatility measure, is assumed to display a long memory, which allows for greater flexibility5.
5 The literature considers asset prices to be integrated of order 1, i.e. I(1). However, the choice between

stationary, I(0), and non-stationary, I(1), processes can be too restrictive for the degree of integration of daily high
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As stated by Barunı́k and Dvořáková (2015), a more general fractional or long-memory frame-

work, where the series are assumed to be integrated of order d and cointegrated of order less

than d, i.e. CI(d �b), where d,b 2 ¬ and, 0 < b  d, is more useful in capturing the empirical

properties of data, in accordance on the evidence of the presence of long memory in the volatili-

ty of asset prices6. Therefore, the FCVAR framework has the advantage of modeling both the

cointegration between highs and lows, and the long-memory property of the range. Finally, con-

cerning the third research question, i.e. if high and low prices forecasts can produce profitable

results using TA trading strategies, it is suggested a simple trading strategy based on daily high

and low FCVAR forecasts. The results are then compared against traditional benchmarks over

different prediction horizons.

The contributions of this work to previous literature can be summarized as follows. First, it

provides new empirical evidence of the modeling and predictability of daily high and low prices

concerning the Brazilian stock market through a fractional cointegration framework. Second,

the paper also addresses an analysis regarding the long memory properties of the range in this

economy. Third, the work differs from past literature by analyzing the predictability of high and

low prices against traditional time series methods across different prediction horizons (multi-

step-ahead forecasts) instead of only one-step-ahed forecasts. In addition, the modeling and

forecasting of daily high and low prices have drawn very limited attention in the extant litera-

ture, thus, this research contributes in this field, and also by considering market data from an

emergent economy like Brazil. Finally, as a practical contribution, the research aims to provide

an alternative tool for market practitioners to improve the operations of TA strategies in the

Brazilian stock market based on high and low prices.

After this introduction, this paper proceeds as follows. Section 2 describes the data and

provides a preliminary analysis of daily high and low prices and the range, focusing on their

integration, cointegration, and long memory properties. An empirical fractionally cointegrated

model for high and low prices is presented in Section 3. The predictability analysis and the res-

pective results from a TA trading strategy based on high and low prices forecasts are discussed

and low prices (BARUNÍK & DVOŘÁKOVÁ, 2015). Since these prices can be considered as a possibly fractiona-
lly cointegrated relationship, it improves flexibility, mainly when the error correction term from the cointegrating
relationship between high and low prices is the range (CHEUNG, 2007; FIESS & MACDONALD, 2002).

6 A review of the literature of the long memory properties of volatility can be found in Yalama and Celik (2013).
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in Section 4. Finally, Section 5 concludes de paper and suggests topics for future research.

2. Dynamic properties of daily high and low prices

This section describes the database and provides an analysis regarding the integration, coin-

tegration and long memory properties of daily high and low stock prices and their diference,

the range. Further, tests for the possible fractional cointegration relationship between highs and

lows are also presented.

2.1 Database

The dynamic properties and the predictability of daily high and low prices are investigated

considering the twenty most traded stocks in the Brazilian stock exchange, the BM&FBOVESPA,

for the period from January 4, 2010 to May 31, 2017. Table 1 describes the stocks, their respec-

tive companies and industries. For companies with both high liquidity preferred and common

shares, only the most traded stock was selected to provide a more representative sample of

the Brazilian stock market. The database are comprised by the time series of daily high and

low prices within a total of 1,803 observations7. For the stocks from Ultrapar Participações SA

(UGPA3) and Kroton Educacional SA (KROT3), the samples start in January 2, 2012 (1,253 ob-

servations) and January 2, 2013 (1,013 observations), respectively, period in which the liquidity

of these assets became more significant.

We consider the daily high log-price, pH
t = log(PH

t ), the daily low log-price, pL
t = log(PL

t ),

and the daily range Rt = pH
t � pL

t , where PH
t and PL

t are the high and low prices at t, respec-

tively. Figure 1 shows the temporal evolution of daily high and low prices of Itaú Unibanco SA

(ITUB4) and their diference, i.e. the range. For log-price time series, to improve visibility the

daily lows log-prices in Figure 1 are the actual daily low log-prices minus 0.15. Daily highs

and lows dynamic suggests the presence of a common trend, indicating that the series are non-

stationary and cointegrated. It is worth to note that higher values of the range are associated

with the periods of high prices variability, confirming its property as a volatility measure8.

7 Data were collected from the Yahoo Finance website (http://finance.yahoo.com/). The respective opening and
closing prices were also collected in order to evaluate the results in terms of trading strategies.

8 The remaining stocks evaluated in this work provide similar patterns regarding the evolution of daily high and
low prices and range.
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Table 1. Database description of companies shares comprised by the twenty most traded stocks

at the BM&FBOVESPA, ordered in terms of liquidity on May, 2017.

Ticker Company Industry Share type

ITUB4 Itaú Unibanco Banks Preferred

BBDC4 Banco Bradesco SA Banks Preferred

ABEV3 Ambev SA Food, beverage and tobacco Common

PETR4 Petroleo Brasileiro SA Energy Preferred

VALE5 Vale SA Materials Preferred

BBAS3 Banco do Brasil SA Banks Common

BRFS3 BRF SA Food, beverage and tobacco Common

UGPA3 Ultrapar Participações SA Energy Common

CIEL3 Cielo SA Software and services Common

KROT3 Kroton Educacional SA Consumer services Common

VIVT4 Telefônica Brasil SA Telecommunication services Preferred

LREN3 Lojas Renner SA Retailing Common

CCRO3 CCR SA Transportation Common

RADL3 Raia Drogasil SA Food and staples retailing Common

JBSS3 JBS SA Food, beverage and tobacco Common

CPFE3 CPFL Energia SA Utilities Common

HYPE3 Hypermarcas SA Pharmaceuticals Common

EMBR3 Embraer SA Capital goods Common

WEGE3 WEG SA Capital goods Common

PCAR4 Cia Brasileira de Distribuição Food and staples retailing Preferred

2.2 Cointegration and memory properties of highs and lows

To analyze the properties of the daily high and low log-prices and the range, we first evaluate

the stationarity of the series. Table 2 provides the Augmented Dickey-Fuller (ADF) (DICKEY

& FULLER, 1979) test results for the daily high and low log-prices (pH
t and pL

t ) as well as the

range (Rt), revealing expected findings. Daily high and low prices are unit root processes, i.e.

they are non-stationary, under a 0.05 significance level. The daily range is a stationary process,

which indicates that daily high and low prices may be cointegrated. Despite these results, it is

worth to mention that the ADF test is designed to evaluate the null hypothesis of a unit root

against the I(0) alternative, i.e. it has very low power against fractional processes.
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Figure 1. High and low log-prices of ITUB4 (a) and its range (b).

In addition to the ADF test, we performed the Kwiatkowski-Phillips-Schmidt-Shin (KPSS)

test of Kwiatkowski et al. (1992), appropriate in situations when the tested series are close

to being a unit root. The KPSS test results, reported in Table 3, confirm the non-stationarity

of the high and low log-prices. However, regarding the range, the results from the KPSS test

indicates the presence of a unit root, while the ADF test suggests that the range is stationary.

This conflicting results may be caused by the possible long memory property of the range. The

results from Table 3 present the KPSS test p-values concerning short lags and long lags in the

model. Notice that the results for high and low log-prices for both short and long lags confirm

the non-stationarity of the series. On the other hand, when long lags are concerned, the KPSS

test results suggest that the range is stationary at a 0.05 significance level (except for PETR4,

CCRO3 and HYPE3 stocks, which the range is stationary at a 0.01 significance level). This

finding provides evidence on the long memory of the range.
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Table 2. P-values of ADF test for unit root for high (H) and low (L) log-prices and range (R)

based on levels and first-differences, where c denotes the inclusion of a constant only, t the

additional inclusion of a trend for daily high and low log-prices in levels only, and lags the

number of lags included in the model, selected using the Bayesian Information Criteria (BIC)

(SCHWARZ, 1978). The p-value of 0.001 is the minimum reported p-value.

Stock Model Lags
ADFH ADFL ADFR

Level First-differences Level First-differences Level

ITUB4 c 2 0.2816 0.001 0.2034 0.001 0.001

BBDC4 c 2 0.1401 0.001 0.0863 0.001 0.001

ABEV3 c, t 1 0.3836 0.001 0.4005 0.001 0.001

PETR4 c, t 1 0.5726 0.001 0.5669 0.001 0.001

VALE5 c 2 0.3249 0.001 0.3261 0.001 0.001

BBAS3 c, t 2 0.1347 0.001 0.0997 0.001 0.001

BRFS3 c 1 0.3822 0.001 0.3824 0.001 0.001

UGPA3 c 1 0.1844 0.001 0.1514 0.001 0.001

CIEL3 c, t 2 0.6447 0.001 0.6391 0.001 0.001

KROT3 c, t 1 0.4336 0.001 0.4126 0.001 0.001

VIVT4 c, t 2 0.0958 0.001 0.0832 0.001 0.001

LREN3 c 3 0.1612 0.001 0.0959 0.001 0.001

CCRO3 c, t 1 0.4392 0.001 0.3973 0.001 0.001

RADL3 c, t 1 0.7935 0.001 0.8224 0.001 0.001

JBSS3 c 3 0.3501 0.001 0.2272 0.001 0.001

CPFE3 c 1 0.5768 0.001 0.3380 0.001 0.001

HYPE3 c, t 2 0.6420 0.001 0.3111 0.001 0.001

EMBR3 c 1 0.3485 0.001 0.2034 0.001 0.001

WEGE3 c, t 1 0.1085 0.001 0.0923 0.001 0.001

PCAR4 c, t 5 0.5265 0.001 0.7832 0.001 0.001
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Table 3. P-values of KPSS test for unit root for high (H) and low (L) log-prices and range (R)

based on levels and two lag specifications, short lag and long lag, where c denotes the inclusion

of a constant only, t the additional inclusion of a trend for daily high and low log-prices in levels

only. Results in bold indicate that series are stationary at a 0.05 significance level. The p-value

of 0.01 is the minimum reported p-value.

Stock Model
KPSSH KPSSL KPSSR

Short lag Long lag Short lag Long lag Short lag Long lag

ITUB4 c 0.01 0.01 0.01 0.01 0.01 0.0754

BBDC4 c 0.01 0.01 0.01 0.01 0.01 0.0937

ABEV3 c, t 0.01 0.01 0.01 0.01 0.01 0.0966

PETR4 c, t 0.01 0.01 0.01 0.01 0.01 0.0478

VALE5 c 0.01 0.01 0.01 0.01 0.01 0.0858

BBAS3 c, t 0.01 0.01 0.01 0.01 0.01 0.0675

BRFS3 c 0.01 0.01 0.01 0.01 0.01 0.0583

UGPA3 c 0.01 0.01 0.01 0.01 0.01 0.0881

CIEL3 c, t 0.01 0.01 0.01 0.01 0.01 0.0689

KROT3 c, t 0.01 0.01 0.01 0.01 0.01 0.0656

VIVT4 c, t 0.01 0.01 0.01 0.01 0.01 0.0552

LREN3 c 0.01 0.01 0.01 0.01 0.01 0.0555

CCRO3 c, t 0.01 0.01 0.01 0.01 0.01 0.0232

RADL3 c, t 0.01 0.01 0.01 0.01 0.01 0.0940

JBSS3 c 0.01 0.01 0.01 0.01 0.01 0.0778

CPFE3 c 0.01 0.01 0.01 0.01 0.01 0.0830

HYPE3 c, t 0.01 0.01 0.01 0.01 0.01 0.01

EMBR3 c 0.01 0.01 0.01 0.01 0.01 0.0935

WEGE3 c, t 0.01 0.01 0.01 0.01 0.01 0.0999

PCAR4 c, t 0.01 0.01 0.01 0.01 0.01 0.0839

Figure 2 shows the autocorrelation function (ACF) of the ranges of four stocks evaluated in

this paper as an example. A high degree of persistence is verified in all cases, with significance

autocorrelations even after 30 lags, confirming the results of the KPSS test and the evidence of

long memory of the stock price ranges.
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(a) Autocorrelation function of the range of ITUB4
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(b) Autocorrelation function of the range of VALE5
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(d) Autocorrelation function of the range of CPFE3
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(c) Autocorrelation function of the range of VIVT4

Figure 2. ACF of daily range of ITUB4 (a), VALE5 (b), VIVT4 (c) and CPFE3 (d).

Similar results on the unit root processes of daily high and low asset prices and the stationa-

rity of the range were also found by Cheung (2007). Therefore, the author suggested a Vector

Error Correction Model (VECM) for high and low log-prices. However, due to the high de-

gree of persistence of the range, traditional cointegration analysis may not be satisfactory in

explaining the relationship between high and low prices, as already verified by Barunı́k and

Dvořáková (2015) and Caporin et al. (2013), giving rise to the use of the fractionally cointegra-

tion framework.

2.3 Testing the fractional cointegration order of high and low prices

The modeling of daily high and low prices as a cointegrated relationship has a particular

feature: the “error correction” term, the range, may contain long memory. Differently from

Cheung (2007) that used a VECM modeling approach, Barunı́k and Dvořáková (2015) and

Caporin (2013) proposed a fractionally cointegrated model to capture this feature. The previous

results reported in this paper, considering the dataset from the Brazilian stock market, also

confirm the use of the fractional cointegration framework.

Let Xt ⌘ (pH
t , pL

t )
0 be a vector composed by the high and low stock prices, pH

t and pL
t ,

respectively. If the elements of Xt are I(1) and exists a linear combination b0Xt that is an I(0)

process, Xt is said a cointegrated vector. Robinson and Yajima (2002) indicated that besides

the existence of a stable relationship between non-stationary series Xt , i.e. in the short-term
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they may diverge, but in the long-term they have an embedded convergence path, it does not

depend on whether the series are I(1). Therefore, to relax the restriction on the choice between

stationary I(0) and non-stationary I(1) processes, the series can be considered an I(d) process

with d 2 ¬, where d is the fractional differencing parameter, fractional degree of persistence or

fractional order of integration.

The series Xt is an I(d) process if ut = (1�L)dXt is I(0), with L standing for the lag operator

and d < 0.5 (ROBINSON & YAJIMA, 2002). If d � 0.5, Xt is defined as a non-stationary I(d)

series with Xt = (1�L)�dutI{t � 1}, where t = 0,±1,±2, . . ., and I{·} is an indicator function.

For d > 0 (d < 0) the process has long-memory (anti-persistence). If d = 0, the process collapses

to the random walk, i.e. a stationary process.

To test the fractional order of integration of high and low log-prices and the range of the

stocks traded at the BM&FBOVESPA, we employed the univariate exact local Whittle (ELW)

estimator, as a semi-parametric approach, proposed by Nielsen and Shimotsu (2007). The

method is consistent in the presence or absence of cointegration, and also to both stationary

and non-stationary cases. The univariate local exact Whittle estimators for the highs, lows and

the range (d̂H , d̂L and d̂R, respectively) are found by minimizing the following contrast function:

Qmd(d
i,Gii) =

1
md

md

Â
j=1


log

⇣
Giil�2di

j

⌘
+

1
Gii

I j

�
, i = H,L,R, (1)

which is concentrated with respect to the diagonal element of the 2⇥ 2 matrix G, a finite and

nonzero matrix with strictly positive diagonal elements. Under the hypothesis that the spectral

density of Ut = [DdH
pH

t ,DdL
pL

t ,DdR
Rt ], G satisfies:

fU(l)⇠ G as l ! 0, (2)

where fU(l) is the spectral density matrix, I j the coperiodogram at the Fourier frequency

l j =
2p j
T of the fractionally differenced series Ut , md is the number of frequencies used in

the estimation, and T is the sample size (CAPORIN ET AL., 2013). The matrix G is estimated

as:

Ĝ =
1

md

md

Â
j=1

Re(I j), (3)
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with Re(I j) standing for the real part of the coperiodogram.

The estimates of the fractional integration order do not imply the presence or absence of

cointegration. To test the equality of integration orders, H0 : dH = dL = d, we also employed

the test suggested by Nielsen and Shimotsu (2007), which is robust to the presence of fractional

cointegration. In the bivariate case under study, the test statistic is:

T̂0 = md(Sd̂)0
✓

S
1
4

D̂�1 �Ĝ� Ĝ
�

D̂�1S0+h(T )2
◆�1 �

Sd̂
�
, (4)

where � is the Hadamard product, d̂ = [d̂H , d̂L], S = [1,�1]0, h(T ) = log(T )�k for k > 0, and

D = diag(G11,G22).

According to Nielsen and Shimotsu (2007), if the variables are not cointegrated, i.e. the

cointegration rank is r = 0, T̂0 ! c2
1, while if r � 1, the variables are cointegrated and T0 ! 0.

For significant large values of the test statistic T̂0 with respect to the null density c2
1, it evidences

against the null hypothesis of the equality of integration orders9.

The first six columns of Table 4 display the ELW estimates of d̂H , d̂L and d̂R for all the stocks

under analysis, where the exponent denotes daily high (H), daily low (L) and daily range (R).

The estimates of integration orders were calculated base on two specifications of bandwidth,

md = T 0.5 and md = T 0.6, as in the works of Nielsen and Shimotsu (2007), Caporin et al.

(2013), and Barunı́k and Dvořáková (2015). For both bandwidths, the order of integration

of daily highs and lows are generally high and close to 1, indicating that the series are not

stationary. In few cases the unitary integration is exceeded, but not substantially. The difference

between high and low prices (the range) is mostly non-stationary (d > 0) and displays long

memory with parameter d̂R < 0.5, in accordance with the previous findings from the ACF of the

ranges (Figure 2). When md = T 0.5 (md = T 0.6), it is observed two (four) cases when the ranges

show long memory with parameter d̂R greater than 0.5, i.e. for VALE5 and CPFE3 (VALE5,

PETR4, CPFE3 and WEGE3) stocks10. Concerning the bandwidth parameter, the results are

not significantly sensitive. Summarizing, the daily high and low prices are not stationary and

the range displays long memory, in line with the results of Caporin et al. (2013) and Barunı́k
9 For more details refer to Nielsen and Shimotsu (2007).

10 The empirical findings of Caporin et al. (2013) and Barunı́k and Dvořáková (2015), using data from developed
economies, also suggest the long memory of the range, but with parameter d̂R > 0.5 in most of the cases.
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and Dvořáková (2015).

Table 4. Estimates of the fractional order of integration parameter d of high (d̂H) and low (d̂L)

log-prices and the range (d̂R) using the exact local Whittle (ELW) estimator, and test statistics

for the equality of integration orders (T̂0). All estimates use both md = T 0.5 and md = T 0.6 as

bandwidths.

Stock
ELWmd=T 0.5 ELWmd=T 0.6 T̂0

d̂H d̂L d̂R d̂H d̂L d̂R md = T 0.5 md = T 0.6

ITAUB4 0.9458 0.9433 0.4016 0.8636 0.8615 0.4904 0.02356 0.00962

BBDC4 0.9681 0.9588 0.4191 0.9173 0.9146 0.4980 0.33188 0.01535

ABEV3 0.9493 0.9565 0.2364 1.0468 1.0342 0.3074 0.16990 0.29797

PETR4 0.9717 0.9717 0.4100 0.9977 1.0083 0.6039 0.11729 0.22006

VALE5 1.0755 1.0718 0.5784 1.1218 1.1320 0.6556 0.05499 0.20446

BBAS3 0.9322 0.9401 0.3795 0.9621 0.9784 0.3852 0.22532 0.53789

BRFS3 1.0009 0.9798 0.2525 1.0301 1.0141 0.3411 1.60855 0.51759

UGPA3 0.9368 0.9388 0.3184 1.0679 1.0556 0.4059 0.01030 0.22491

CIEL3 0.9684 0.9646 0.3502 1.0337 1.0316 0.3671 0.04779 0.00881

KROT3 0.9245 0.9247 0.4344 1.0351 1.0196 0.4796 0.00005 0.29418

VIVT4 0.9003 0.9007 0.3104 0.9167 0.9197 0.4113 0.00049 0.01874

LREN3 0.9582 0.9687 0.2950 0.9899 0.9997 0.3828 0.32599 0.17765

CCRO3 0.8845 0.8986 0.3963 0.9249 0.9257 0.4227 0.62148 0.00118

RADL3 1.0471 1.0449 0.4147 1.0614 1.0690 0.3182 0.01513 0.10242

JBSS3 0.9470 0.9441 0.3211 0.9072 0.8907 0.2396 0.02506 0.45505

CPFE3 0.9697 0.9783 0.6053 0.9893 0.9941 0.7145 0.26326 0.04696

HYPE3 1.0162 0.9940 0.4040 0.9709 0.9475 0.4140 1.77430 1.06194

EMBR3 0.9792 0.9642 0.2566 0.9998 1.0105 0.3395 0.73207 0.22124

WEGE3 1.0402 1.0290 0.4209 0.8242 0.8225 0.5901 0.41793 0.00546

PCAR4 0.9335 1.0340 0.0854 1.0973 1.1035 0.1664 0.80985 0.03506

Regarding the test for the equality of integration orders, the last two columns of Table 4

presents the test statistics estimated with md = T 0.5 and md = T 0.6 as bandwidth parameters.

Since the critical value of c2
1 is 2.71 in a 90% confidence interval, the null hypothesis of equality

of the integration orders cannot be rejected for all tested series (the maximum test statistic is

1.7743), for both bandwidth parameters. The results suggest that a FCVAR modeling approach
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with the same degree of integration orders dH = dL is appropriate for estimating the relationship

between the daily high and low prices under study. Notice that the generalization to the presence

of fractional cointegration between highs and lows is novel for the modeling of the stocks traded

at the Brazilian stock market.

3. FCVAR modeling approach for daily high and low prices

The fractionally cointegrated vector autoregression (FCVAR), formalized by Johansen (2008)

and Johansen and Nielsen (2010, 2012), generalize the classical cointegration analysis by allo-

wing Xt to be fractional of order d and cofractional of order d � b, which conducts that b0Xt

should be fractional of order d � b � 0. This framework allows for the existence of a com-

mon stochastic trend, integrated with order d, and the short-term divergences from the long-run

equilibrium integrated of order d �b. The parameter b is the strength of the cointegrating rela-

tionships, called as the cointegration gap (a higher b means less persistence in the cointegrating

relationships).

In the FCVAR modeling approach, the usual lag operator and the difference operator are re-

placed by the fractional lag operator and the fractional difference operator, Lb = 1�Db and Db =

(1� L)b, respectively (JOHANSEN & NIELSEN, 2012; NIELSEN & MORIN, 2016). The

fractional difference operator is defined by the binomial expansion DbZt = Â•
n=1 (�1)n�b

n
�
Zt�n

(BARUNÍK & DVOŘÁKOVÁ, 2015). Thus, the model is applied to Zt = Dd�bXt . A fractio-

nally cointegrated vector autoregressive FCVARd,b(p) model for Xt ⌘ (pH
t , pL

t )
0 as the vector of

high and low prices is described as:

DdXt = Dd�bLbab0Xt +
p

Â
i=1

GiDdLi
bXt + e, t = 1, . . . ,T, (5)

where a and b are 2⇥ r matrices comprised by the long-run parameters, 0  r  2, the rank r

is termed the cointegration, or cofractional, rank, d � b > 0, G = (G1, . . . ,Gp) are the autore-

gressive augmentation parameters related to the short-run dynamics, and et is a p-dimensional

i.i.d (0,W), with positive-definite variance matrix W.

The columns of b constitute the r cointegration (cofractional) vectors such that b0Xt are

the cointegrating combinations of the variables in the system, i.e. the long-run equilibrium
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relations. The parameters in a are the adjustment or loading coefficients which represent the

speed of adjustment towards equilibrium for each of the variables (NIELSEN & MORIN, 2016).

If d�b < 0.5, b0Xt is asymptotically a zero-mean stationary process. Denoting P = ab0, where

the 2⇥ r matrices a and b with r  2 are assumed to have full column rank r, the columns of b

are then the r cointegrating (cofractional) relationship determining the long-run equilibrium.

Non-zero mean data, Yt = µ+Xt for example, can be considered as DaYt = Da(µ+Xt) =

DaXt , since Da1 = 0 for a > 0. Thus, this means that the model with d > b is invariant to the

inclusion of a restricted constant term r. As in Barunı́k and Dvořáková (2015), the inclusion of

a constant term is considered only in the model with d = b, which replaces the formulation in

(5) by:

DdXt = Lda(b0Xt +r0)+
p

Â
i=1

GiDdLi
bXt + e, t = 1, . . . ,T, (6)

where r is the restricted constant term µ = ar0, interpreted as the mean level of the long-run

equilibrium.

The model parameters are estimated by maximum likelihood as described in Nilsen and

Morin (2016). Before estimating the FCVAR models for daily high and low prices of the stocks

traded at BM&FBOVESPA, it is required the use of an appropriate approach to test and deter-

mine the cointegration rank in the model, described as follows.

3.1 Cointegration rank in the presence of long memory

Cointegration rank testing in the presence of long memory differs from traditional tests for

integration (JOHANSEN, 1991). A time series Xt is fractionally cointegrated CI(d,b) if Xt has

I(d) elements and for some b > 0, exists a vector b such that b0Xt is integrated of order (d�b).

We first apply the cointegration rank test proposed by Nielsen and Shimotsu (2007), that allows

for both stationary and non-stationary fractionally integrated processes. The test is based on the

exact local Whittle estimate of d, used to examine the rank of the spectral density matrix G and

its eigenvalues. In the bivariate case under study, the test estimates the rank r by:

r̂ = arg min
u=0,1

L(u), (7)
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where

L(u) = v(T )(2�u)�
2�u

Â
i=1

d̂i, (8)

for some v(T )> 0 which satisfies

v(T )+
1

m1/2
L v(T )

! 0, (9)

with d̂i as the i-th eigenvalue of Ĝ, and mL a new bandwidth parameter.

The estimation of matrix G involves two steps. First, d̂H and d̂L are obtained first using (1)

with md as bandwidth parameter. Given d̄⇤ = (d̂H + d̂L)/2, the matrix G is estimated as follows:

Ĝ =
1

mL

mL

Â
j=1

Re(I j), (10)

such that mL/md ! 0. The estimates of G are robust to all different choices of md and mL

(NIELSEN & SHIMOTSU, 2007).

Table 5 displays the results of the cointegration rank test of Nielsen and SHimotsu (2007)

using md = T 0.6 and mL = T 0.5 for both cases where v(T ) = m�0.45
L and v(T ) = m�0.05

L . The

results suggest that there is one cointegration relationship. In all cases L(1)< L(0) and this can

be taken as strong evidence in favor of fractional cointegration between pH
t and pL

t so that the

expression in (7) is minimized in correspondence of r = 1.

In addition, the cointegration rank test proposed by Johansen and Nielsen (2012) was also

considered. In the FCVAR framework, the hypothesis Hr : rank(P) = r is tested against the al-

ternative Hn : rank(P) = n. Let L(d,b,r) be the profile likelihood function given rank r, where

(a,b,G) have been concentrated out by regression and reduced rank regression (NIELSEN &

MORIN, 2016). For the model with a constant, the test concerns the hypothesis Hr : rank(P,µ)=

r against Hn : rank(P,µ) = n, with L(d,r) as profile likelihood function given rank r, where the

parameters (a,b,r,G) have been concentrated out by regression and reduced rank regression.
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Table 5. Estimates of the fractional cointegration rank test statistics and their respective eigen-

values by the approach of Nielsen and Shimotsu (2007) using d̄⇤, the average of the esti-

mated integration orders of daily high and low prices from the ELW estimator with md = T 0.6

as bandwidth parameter, in the fractional cointegration analysis for both v(T ) = m�0.45
L and

v(T ) = m�0.05
L , with mL = T 0.5.

Rank estimates

Eigenvalues v(T ) = m�0.45
L v(T ) = m�0.05

L

Stock d̄⇤ d̂1 d̂2 L(0) L(1) r̂ L(0) L(1) r̂

ITAUB4 0.9024 0.2250 0.0006 -1.6855 -1.8373 1 -0.3716 -1.1803 1

BBDC4 0.9367 0.2089 0.0006 -1.6855 -1.8373 1 -0.3716 -1.1804 1

ABEV3 0.9954 0.1225 0.0005 -1.6831 -1.8330 1 -0.3702 -1.1766 1

PETR4 0.9900 0.6228 0.0021 -1.6783 -1.8324 1 -0.3675 -1.1770 1

VALE5 1.1019 0.2946 0.0006 -1.6807 -1.8362 1 -0.3689 -1.1803 1

BBAS3 0.9593 0.5299 0.0016 -1.6831 -1.8355 1 -0.3702 -1.1791 1

BRFS3 0.9969 0.1668 0.0005 -1.6831 -1.8353 1 -0.3702 -1.1789 1

UGPA3 0.9972 0.1371 0.0007 -1.6561 -1.8185 1 -0.3553 -1.1681 1

CIEL3 0.9981 0.1809 0.0008 -1.6855 -1.8336 1 -0.3716 -1.1766 1

KROT3 0.9721 0.4986 0.0024 -1.6394 -1.8101 1 -0.3466 -1.1638 1

VIVT4 0.9102 0.1810 0.0006 -1.6831 -1.8349 1 -0.3702 -1.1785 1

LREN3 0.9842 0.2164 0.0013 -1.6831 -1.8295 1 -0.3702 -1.1730 1

CCRO3 0.9122 0.2390 0.0012 -1.6831 -1.8314 1 -0.3702 -1.1750 1

RADL3 1.0569 0.1508 0.0008 -1.6831 -1.8308 1 -0.3702 -1.1744 1

JBSS3 0.9174 0.5854 0.0031 -1.6831 -1.8311 1 -0.3702 -1.1747 1

CPFE3 0.9862 0.1360 0.0005 -1.6855 -1.8350 1 -0.3716 -1.1780 1

HYPE3 0.9707 0.3071 0.0010 -1.6831 -1.8353 1 -0.3702 -1.1789 1

EMBR3 0.9873 0.2646 0.0012 -1.6831 -1.8327 1 -0.3702 -1.1762 1

WEGE3 0.9258 0.1452 0.0006 -1.6831 -1.8330 1 -0.3702 -1.1766 1

PCAR4 1.0687 0.2827 0.0156 -1.6783 -1.7248 1 -0.3675 -1.0694 1

The profile likelihood function is maximized both under the hypothesis Hr and under Hn

considering the LR test statistic computed as follows:

LR(q) = 2 log
�
L(d̂n, b̂n,n)/L(d̂r, b̂r,r)

�
, (11)
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where q = n� r and

L(d̂n, b̂n,n) = max
d,b

L(d,b,n), and L(d̂r, b̂r,r) = max
d,b

L(d,b,r). (12)

The asymptotic distribution of LR(q) depends qualitatively (and quantitatively) on the pa-

rameter b. In the case of “weak integration”, 0 < b < 0.5, LR(q) has a standard asymptotic

distribution (NIELSEN & MORIN, 2016):

LR(q) D�! c2(q2), 0 < b < 0.5. (13)

Otherwise, in the case of “strong cointegration”, when 0.5 < b  d, asymptotic theory is

nonstandard and

LR(q) D�! Tr
⇢
R 1

0 dW (s)F(s)0
⇣R 1

0 F(s)F(s)0ds
⌘�1 R 1

0 F(s)dW (s)0
�
, b � 1/2, (14)

where the vector process dW is the increment of ordinary (non-fractional) vector standard Brow-

nian motion of dimension q = p� r (NIELSEN & MORIN, 2016). The vector process F de-

pends on the deterministics in a similar way as in the CVAR model in Johansen (1995). In

the model with no determinist term F(u) = Wb(u), otherwise, if the restricted constant term is

included in the model, then F(u) =
�
W 0

b(u),1
�0, where Wb(u) = G(b)�1 R u

0 (u� s)b�1dW (s) is

vector fractional type-II Brownian motion.

Table 6 shows the results of the cointegration test of Johansen and Nielsen (2012). For

all stocks, a significant cointegration relationship was found. For r = 0, larger values of the

likelihood ratio (LR) statistics indicates the rejection the null hypothesis of zero cointegrating

relationship. Otherwise, when r = 1, the LR statistics are smaller and the corresponding p-

values indicate that we cannot reject the null of one cointegrating relationship.

3.2 Empirical FCVAR model

Based on the previous evidence of one significant cointegrating vector for the stocks traded

at the BM&FBOVESPA, a fractionally cointegrating VAR (FCVAR) model was estimated for

the daily high and low prices. In all cases, we set p = 1 for the short-term deviations, which

20



is sufficient to capture the autocorrelation of the residuals. Also, as stated by MacKinnon and

Nielsen (2014), a single lag is usually sufficient in the fractional model, in contrast with the

standard cointegrated VAR where more lags are required to account for the serial correlation in

the residuals. The FCVAR model was estimated for the case when d 6= b, since all estimates

reported earlier rejects the hypothesis where d and b are close to equality (see Table 6).

Table 6. Likelihood ratio (LR) statistics and p-values from the cointegration test by Johansen

and Nielsen (2012) for each rank r = 0,1,2, and the corresponding estimates of the parameter

of the fractional order of integration (d̂) and the parameter of the cointegration gap (b̂).

r = 0 r = 1 r = 2

Stock d̂ b̂ LR p-value d̂ b̂ LR p-value d̂ b̂

ITAUB4 0.660 0.428 31.464 0.000 1.017 0.333 0.138 0.710 0.998 0.332

BBDC4 0.549 0.442 29.178 0.000 0.994 0.526 0.182 0.673 0.977 0.522

ABEV3 0.704 0.434 22.535 0.000 1.041 0.492 0.458 0.509 0.987 0.258

VALE5 0.722 0.435 17.597 0.001 0.949 0.200 0.186 0.666 0.937 0.153

PETR4 0.777 0.393 29.662 0.000 1.112 0.228 2.440 0.118 1.141 0.377

BBAS3 0.709 0.458 30.939 0.000 1.020 0.483 1.457 0.227 1.069 0.506

BRFS3 0.678 0.430 31.713 0.000 1.012 0.495 1.890 0.169 0.981 0.467

UGPA3 0.637 0.458 38.847 0.000 1.036 0.656 0.401 0.573 1.016 0.647

CIEL3 0.677 0.446 20.704 0.000 1.043 0.353 2.521 0.112 0.992 0.277

KROT3 0.583 0.449 18.863 0.001 1.021 0.354 3.423 0.064 0.945 0.171

VIVT4 0.685 0.444 29.783 0.000 0.462 0.462 3.253 0.079 0.991 0.602

LREN3 0.515 0.409 16.802 0.002 1.006 0.534 0.193 0.683 0.939 0.436

CCRO3 0.600 0.444 29.294 0.000 1.011 0.473 1.859 0.173 0.967 0.433

RADL3 0.572 0.463 25.499 0.000 1.069 0.513 1.762 0.145 1.013 0.440

JBSS3 0.557 0.438 57.328 0.000 0.987 0.714 0.136 0.725 0.999 0.717

CPFE3 0.936 0.300 52.309 0.000 1.116 0.341 0.786 0.375 1.144 0.371

HYPE3 0.709 0.470 40.780 0.000 0.968 0.397 1.508 0.219 0.922 0.380

EMBR3 0.623 0.460 33.862 0.000 1.025 0.705 0.137 0.721 1.022 0.703

WEGE3 0.735 0.445 24.928 0.000 0.835 0.010 0.129 0.762 1.034 0.627

PCAR4 0.457 0.350 27.375 0.000 1.009 0.706 0.135 0.715 1.009 0.906

Table 7 reports the FCVAR estimates for the high and low prices of the most traded stocks

in the Brazilian stock market. The results are similar for all stocks. First, the parameters es-
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timates of the fractional integration order and the cointegration gap, d̂ and b̂ respectively, are

significantly different from zero and different from each other. Estimates of d̂ indicate that daily

high and low prices are integrated of an order close to the unity (except for BRFS3 and JBSS3

stocks that show the lower values of d̂, approximately 0.84). The orders of integration of daily

prices are smaller than unity in 16 out of 20 cases. Regarding the cointegrating vector, b̂, the

estimates are very close to the vector of (1,�1). Since the range is defined as the difference

between the high and low daily prices, i.e., (pH
t � pL

t ), it is expected the cointegrating vector to

be (1,�1). The results suggest that a linear combination of the daily high and low prices (the

range) is integrated of a non-zero order, and the range is in the stationary region in most of the

cases (d �b < 0.5), with the exception of ranges of the PETR4, BRFS3 and CPFE3 stocks11.

The estimates of the adjustment coefficients, âH and âL, which describe the speed of ad-

justment of pH
t and pL

t toward equilibrium, are significantly different from zero (Table 7). In

all cases, âH is negative and âL is positive, indicating that they move in opposite directions to

restore equilibrium after a shock to the system occurs. Considering the absolute value of theses

parameters estimates, in 50% of the cases, âH estimates are smaller than âL, implying that the

correction in the equation for daily lows overshoots the long-run equilibrium. These results

were also verified by Barunı́k and Dvořáková (2015) and Caporin et al. (2013), however, in

more than 50% of the cases âH estimates were smaller than âL.

Concerning the short-run dynamics parameters estimates G1 = (ĝ11, . . . , ĝ22), the coefficients

of the lagged daily highs and lows are mostly positive, which suggests an indication of spill-

over effects (Table 7)12. Finally, the residuals were also tested for the remaining autocorrelation

and heteroskedasticity. In most cases, the null of no autocorrelation was rejected according

to the Ljung-Box Q-test, but based on the visualization of the autocorrelation functions, the

dependency is weak, and it disappears after the second lag. Some heteroskedasticity was also

detected by the autocorrelation function of squared residuals, however, it is very weak13.
11 This finding differs from Barunı́k and Dvořáková (2015) and Caporin et al. (2013), where the ranges fall

mostly in the non-stationary region.
12 Cheung (2007) states that negative coefficients imply a regressive behavior, whereas positive coefficients are

an indication of spill-over effects. In this case, higher daily highs tend to fall to a lower level, lower daily highs
tend to drift up to a higher level, and higher daily lows lead to higher daily highs (BARUNÍK & DVOŘÁKOVÁ,
2015).

13 These results are not reported here to avoid very exhaustive analysis.
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Table 7. FCVAR model estimates results. Standard errors are shown below the parameters

estimates in brackets.

Stock d̂ b̂ b̂ âH âL ĝ11 ĝ12 ĝ21 ĝ22

ITAUB4 0.913 0.535 (1,-1.008) -0.490 0.914 0.174 0.189 0.135 0.326

(0.029) (0.067) (0.171) (0.243) (0.145) (0.140) (0.161) (0.187)

BBDC4 0.928 0.542 (1,-1.009) -0.651 0.810 0.265 0.058 0.183 0.230

(0.030) (0.064) (0.188) (0.211) (0.152) (0.144) (0.150) (0.163)

ABEV3 1.002 0.703 (1,-1.008) -0.636 0.538 0.022 0.132 0.020 0.201

(0.028) (0.057) (0.107) (0.090) (0.074) (0.077) (0.064) (0.079)

VALE5 0.854 0.388 (1,-1.010) -1.754 0.592 0.446 0.115 -0.058 0.768

(0.042) (0.053) (0.457) (0.260) (0.306) (0.327) (0.210) (0.275)

PETR4 0.922 0.389 (1,-1.008) -0.973 0.973 0.261 0.128 0.207 0.292

(0.041) (0.069) (0.411) (0.431) (0.332) (0.326) (0.326) (0.351)

BBAS3 0.935 0.631 (1,-1.010) -0.204 0.721 -0.021 0.399 0.144 0.296

(0.039) (0.057) (0.105) (0.151) (0.098) (0.112) (0.116) (0.126)

BRFS3 0.828 0.322 (1,-1.013) -0.883 1.872 0.536 0.226 -0.238 1.224

(0.040) (0.032) (0.386) (0.554) (0.312) (0.364) (0.439) (0.470)

UGPA3 1.004 0.725 (1,-1.006) -0.554 0.546 0.126 0.112 -0.004 0.235

(0.025) (0.065) (0.118) (0.114) (0.086) (0.086) (0.085) (0.097)

CIEL3 0.955 0.516 (1,-1.010) -1.002 0.743 0.369 -0.180 0.079 0.193

(0.029) (0.074) (0.267) (0.210) (0.196) (0.175) (0.143) (0.167)

KROT3 0.950 0.513 (1,-1.015) -0.898 0.677 0.314 -0.035 0.233 0.146

(0.048) (0.089) (0.306) (0.278) (0.233) (0.214) (0.211) (0.220)

VIVT4 0.974 0.687 (1,-1.007) -0.490 0.708 -0.025 0.239 -0.084 0.301

(0.023) (0.057) (0.106) (0.130) (0.077) (0.083) (0.091) (0.105)

LREN3 0.949 0.620 (1,-1.011) -1.347 0.254 0.184 -0.115 -0.009 0.219

(0.028) (0.069) (0.234) (0.078) (0.128) (0.133) (0.059) (0.093)

CCRO3 0.943 0.565 (1,-1.011) -0.528 0.915 0.090 0.151 -0.148 0.476

(0.029) (0.067) (0.149) (0.215) (0.119) (0.116) (0.148) (0.177)

RADL3 1.020 0.617 (1,-1.008) -0.786 0.767 0.353 -0.140 0.082 0.130

(0.032) (0.063) (0.152) (0.138) (0.128) (0.104) (0.094) (0.101)

JBSS3 0.857 0.662 (1,-1.020) -0.146 0.470 -0.002 0.443 0.271 0.224

(0.041) (0.061) (0.067) (0.110) (0.067) (0.083) (0.089) (0.092)

CPFE3 0.968 0.304 (1,-1.007) -2.130 1.894 1.171 -0.845 -0.337 0.885

(0.029) (0.075) (0.086) (0.085) (0.159) (0.115) (0.169) (0.155)

HYPE3 0.936 0.530 (1,-1.009) -0.655 0.865 0.302 0.143 0.148 0.414

(0.036) (0.057) (0.162) (0.198) (0.130) (0.132) (0.138) (0.168)

EMBR3 0.973 0.701 (1,-1.011) -0.522 0.595 0.060 0.175 0.006 0.321

(0.030) (0.054) (0.091) (0.108) (0.068) (0.072) (0.080) (0.095)

WEGE3 0.967 0.617 (1,-1.011) -0.617 0.698 0.273 -0.004 0.239 0.147

(0.034) (0.062) (0.124) (0.132) (0.111) (0.090) (0.096) (0.096)

PCAR4 1.011 0.729 (1,-1.006) -1.104 0.017 0.038 -0.074 -0.006 0.091

(0.028) (0.052) (0.085) (0.010) (0.040) (0.118) (0.007) (0.045)
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4. Predictability of daily high and low prices and trading performance

Besides the advantages of describing the dynamics of high and low asset prices and their

difference, the range, the forecasting ability of the FCVAR modeling framework was also exa-

mined in the Brazilian stock market. Forecasts were performed using the FCVAR in an out-of-

sample set comprised by the last three years of data. As competing models, we consider the

VECM model of Cheung (2007); the random walk, RW; the ARIMA model; the 5-day moving

average, MA5; and the 22-day moving average, MA22; the latter two of which correspond to

weekly and monthly averages respectively and are very employed by technical analysts.

The Diebold and Mariano (1995) test is carried out to measure the forecasting superiority of

the FCVAR, focusing on the mean squared error (MSE) of the forecasts. The error of the model

i for the h-step ahead forecasting horizon is defined by:

eH
t+h,i = pH

t+h � p̂H
t+h,i, (15)

for the daily high, and

eL
t+h,i = pL

t+h � p̂L
t+h,i, (16)

for the daily low, with i = FCVAR,VECM,RW,ARIMA,MA5,MA22, where pH
t (pL

t ) and p̂H
t

( p̂L
t ) are the actual and predicted high (low) prices at t, respectively.

It is worth noting that not only one-step-ahead forecasting is conducted to assess the pre-

diction performance of fractionally cointegration models for high and low asset prices, as made

by Caporin (2013), but also five- and ten-step-ahead forecasting are performed to examine the

medium- and long-term forecasting ability of the empirical FCVAR and selected competitors.

Table 8 shows summary results of the Diebold and Mariano (1995) test for the out-of-sample

forecasts of daily high and low log-prices obtained using the FCVAR against the benchmark

models14.

14 For the sake of brevity, detailed results are not presented here but are available upon request.
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Table 8. Summary of Diebold-Mariano test. “>” indicates the number of cases in which the

FCVAR forecasts over-perform with respect to the corresponding model at 95% confidence.

“=” indicates the number of cases in which the performance of the FCVAR is statistically equal

to that of the corresponding model, whereas “<” indicates under-performance of the FCVAR.

VECM RW ARIMA MA5 MA22

Price > = < > = < > = < > = < > = <

Panel A: one-step-ahead prediction horizon

pH
t+1 8 12 0 17 3 0 18 2 0 20 0 0 20 0 0

pL
t+1 9 11 0 15 5 0 17 2 0 20 0 0 20 0 0

Panel B: five-step-ahead prediction horizon

pH
t+5 8 12 0 15 5 0 16 4 0 20 0 0 20 0 0

pL
t+5 7 13 0 13 7 0 13 7 0 20 0 0 20 0 0

Panel C: ten-step-ahead prediction horizon

pH
t+10 6 14 0 13 7 0 17 3 0 20 0 0 20 0 0

pL
t+10 5 15 0 11 9 0 15 5 0 20 0 0 20 0 0

From the experimental results obtained, the FCVAR approach in general consistently outper-

forms all of other competitors (Table 8). Overall, the rankings from best to worst are: FCVAR,

VECM, ARIMA, RM, MA5, MA22. As far as the comparison between the FCVAR and VECM,

the former almost wins in 50% of the cases. When it is not the case, the methods can be con-

sidered as equally accurate. As expected, the moving average methodologies performed worst.

When comparing the performance of each method across the three prediction horizons (i.e., 1,

5, and 10), the superior performance of FCVAR over the remaining methods is still verified.

However, predictions of FCVAR and VECM tend to be equally accurate with the increase in

prediction horizon. Summing up, the results indicate the predictability of the daily high and low

prices in the Brazilian stock markets. Moreover, the use of a long memory framework such as

the FCVAR do improve forecasting performance in short- and long-term prediction horizons.

Figure 3 illustrates the performance of FCVAR modeling framework for daily high and

low forecasting by showing the candlesticks plots of ITUB4 and CPFE3 stocks, based on the

observed prices of the equities with the corresponding predicted high-low bands by FCVAR for

the last three months of data, considering one-step-ahed predictions. It is interesting to note that
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FCVAR provide a good fit of the high-low dispersion, indicating the potential of the proposed

method which can enhances chart analysis, a tool often used by technical traders.
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(a) ITUB4 candlestick and FCVAR predicted high−low bands
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(b) CPFE3 candlestick and FCVAR predicted high−low bands

|open − close |
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open > close
FCVAR predicted low
FCVAR predicted high
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open < close
open > close
FCVAR predicted low
FCVAR predicted high

Figure 3. ITUB4 (a) and CPFE3 (b) candlesticks and FCVAR predicted high-low bands.

To evaluate the forecasts in a perspective of profit-seeking a trading strategy is performed as

an illustrative example. Let pO
t and pC

t be the opening and closing stock prices at t, respectively,

and p̂H
t+h and p̂L

t+h be the forecasted high and low prices for day t + h after market closes on

day t. The trading strategy is comprised by four steps (XIONG ET AL., 2017): i) on a given

day t, a ‘buy’ signal for the asset is generated if p̂H
t+h� pO

t > pO
t � p̂L

t+h; ii) if the ‘buy’ signal is

observed for k consecutive days beginning with day t, buy the asset on day t + k� 1 using the

closing value pC
t+k�1; otherwise, hold the capital; iii) on another day s subsequent to buying the

asset, a ‘sell’ signal is generated if p̂H
s+h � pO

s < pO
s � p̂L

s+h; iv) sell the asset on day s+ k� 1

using the closing value pC
s+k�1 of that day if a ‘sell’ signal has been observed for k consecutive

trading days beginning with day s; otherwise, hold the asset.

Notice that the predicting horizon in this paper is one-, five- and ten-step-aheads (h =

1,5,10). The observed consecutive trading days k has to be set in advance and do not change

as the steps of the trading strategy are conducted. In this work we set k = 2 as an example.

A one-time 0.1% deduction was considered in order to mimic the transaction cost. Also, it is

supposed that the investors can enter the market at any time during the evaluation period.

Table 9 shows the annualized returns from a trading strategy concerning high and low stock

prices forecasting using different approaches, including the one suggested in this paper, the
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FCVAR model. In addition, Table 10 presents the percentage os trades resulting in positive

returns. Generally speaking, both the annualized returns and percentage of trades resulting in

positive returns suggest that the FCVAR performs quite well, corresponding to higher values of

both metrics. It is worthy to note that the percentage of profitable trades is always larger than

50% for FCVAR.

As far as the comparison among the forecasting methods in terms of the average annualized

returns and percentage of trades with a positive annualized return is concerned, for all stocks

FCVAR provided superior average results than the alternatives (Tables 9 and 10). The VECM

method showed very similar results with FCVAR. RW showed the worst results. Further, notice

that the values of annualized returns and percentage of trades with a positive annualized return

of all methodologies are reduced but not significantly with the increasing of the forecasting

horizon. Our findings are in line with the results of Caporin et al. (2013), which concern the

US stock market, indicating that a fractionally cointegration approach is able to improve TA

strategies based on high and low prices forecasting.
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5. Conclusion

This work evaluated the predictability and dynamic properties of daily high and low stock

prices in the Brazilian stock market. The motivation for examining maximum and minimum

asset prices is that they provide valuable information regarding the dynamic process throughout

a day, week, etc; they can be seen as references values for investors in order to place buy

or sell orders; and are also related with the concept of volatility since their difference, the

range, is highly efficient and robust estimator of variability. The modeling of daily high and

low prices considered a fractionally cointegrated VAR model (FCVAR), which accounts for

two fundamental patterns of these prices: their cointegrating relationship and the long-memory

of their difference (i.e., the range), as the error correction term is allowed to fall into a non-

stationary region. Additionally, this work also evaluated if high and low prices forecasts by

FCVAR can improve technical analysis through a simple trading strategy.

The empirical analysis examined daily high and low prices of the twenty most traded stocks

in the Brazilian stock exchange, the BM&BOVESPA, during the period from January 2010 to

May 2017. The findings indicated that daily high and low prices are integrated of an order

close to the unity, and the range displays long memory and is in the stationary region in most of

the cases. For all stocks, a significant cointegration relationship was found between daily high

and low prices. The empirical FCVAR model shows that high and low prices move in opposite

directions to restore equilibrium after a shock to the system occurs. Also, the results evidence

the predictability of daily highs and lows in the Brazilian stock market for different forecasting

horizons, in which the fractionally approach conducts to better predictions than competitive

methods and can improve trading strategies.

Future work shall include the estimation of the FCVAR with the restriction on the cointe-

grating vector b to be (1,�1), which allows the interpretation of the difference (d � b) as the

order of integration of the range. The evaluation of the forecasts in terms of more sophisti-

cated trading strategies is aso demanding and compelling, mainly considering equity intradaily

trading. Further, the evidence of long memory in the range dynamics can lead to the develop-

ment of volatility methods based on the forecasted range to improve derivatives pricing and risk

analysis.
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